Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Black current leaves

Ribis nigri folium Black current leaves Ribes nigrum L. Gross uiariaceae... [Pg.201]

Although flavanols, also called catechins, seem to be widely distributed in plants, they are rich only in tea leaves, where catechins may contribute up to 30% of dry leaf weight. The antioxidative and antitumor properties of green and black teas and their tea polyphenols are extensively studied. It seems that tea polyphenols are important not only for plants but also for humans. Therefore, this brief review will discuss the current data with a particular emphasis on the effects of tea polyphenols on the cellular oxidative stress and cancer chemopreventive properties. The action mechanisms of several phytopolyphenols on cancer chemoprevention will be elaborated. [Pg.81]

Figure I.6a also reveals the timeline of milestones in fuel cell design. The leftmost curve is the performance curve of the first practical H2/O2 fuel cell, built by Mond and Langer in 1889 (Mond and Langer, 1889). The electrodes consisted of thin porous leafs of Pt covered with Pt black particles with sizes of 0.1 lam. The electrol)de was a porous ceramic material, earthenware, that was soaked in sulfuric acid. The Pt loading was 2 mg cm and the current density achieved was about 0.02 A cm at a fuel cell voltage of 0.6 V. The next curve in Figure I.6a marks the birth of the PEFC, conceived by Grubb and Niedrach (Grubb and Niedrach, 1960). In this cell, a sulfonated cross-linked polystyrene membrane served as gas separator and proton conductor. However, the proton conductivity of the polystyrene PEM was too low and the membrane lifetime was too short for a wider use of this cell. It needed the invention of a new class of polymer electrolytes in the form of Nafion PFSA-type PEMs to overcome these limitations. Figure I.6a also reveals the timeline of milestones in fuel cell design. The leftmost curve is the performance curve of the first practical H2/O2 fuel cell, built by Mond and Langer in 1889 (Mond and Langer, 1889). The electrodes consisted of thin porous leafs of Pt covered with Pt black particles with sizes of 0.1 lam. The electrol)de was a porous ceramic material, earthenware, that was soaked in sulfuric acid. The Pt loading was 2 mg cm and the current density achieved was about 0.02 A cm at a fuel cell voltage of 0.6 V. The next curve in Figure I.6a marks the birth of the PEFC, conceived by Grubb and Niedrach (Grubb and Niedrach, 1960). In this cell, a sulfonated cross-linked polystyrene membrane served as gas separator and proton conductor. However, the proton conductivity of the polystyrene PEM was too low and the membrane lifetime was too short for a wider use of this cell. It needed the invention of a new class of polymer electrolytes in the form of Nafion PFSA-type PEMs to overcome these limitations.

See other pages where Black current leaves is mentioned: [Pg.454]    [Pg.37]    [Pg.748]    [Pg.2]    [Pg.4]    [Pg.933]    [Pg.748]    [Pg.951]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Black Leaf

© 2024 chempedia.info