Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binding to AP-peptide

An elucidation of the mechanisms of brain iron homeostasis, as outlined in figure 1, will help our understanding of AD especially since iron binds to Ap-peptide and enhances beta-amyloid toxicity [35-38]. Excess iron accumulation is a consistent observation in the AD brain. As discussed above, patients with hemochromatosis are at risk developing AD at an earlier age [2]. Brain autopsy samples from AD patients have elevated levels of ferritin iron, particularly in the neurons of the basal ganglia [39] and most amyloid plaques contain iron and ferritin-rich cells [40]. Clinically there is a reported decrease in the rate of decline in AD patients who were treated with the intramuscular iron chelator, desferrioxamine [41]. Iron enhances cleavage of the Ap-peptide domain of APP by the metalloprotease alpha secretase [42, 43]. Part of the protective effect of the major cleavage product of APP, APP(s), may derive from its capacity to scavange metals to diminish metal-catalyzed oxidative stress to neuronal cells [44]. APP is, itself, a metalloprotein [4]. [Pg.218]


See other pages where Binding to AP-peptide is mentioned: [Pg.715]    [Pg.715]    [Pg.350]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



AP peptide

Peptide binding

© 2024 chempedia.info