Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzylic bond dissociation energy

We attributed the decreased bond dissociation energy in propene to stabilization of allyl radical by electron delocalization Similarly electron delocalization stabilizes benzyl rad ical and weakens the benzylic C—H bond... [Pg.441]

From this value and known C—H bond dissociation energies, pK values can be calculated. Early application of these methods gave estimates of the p/Ts of toluene and propene of about 45 and 48, respectively. Methane was estimated to have a pAT in the range of 52-62. Electrochemical measurements in DMF have given the results shown in Table 7.3. These measurements put the pK of methane at about 48, with benzylic and allylic stabilization leading to values of 39 and 38 for toluene and propene, respectively. The electrochemical values overlap with the pATdmso scale for compounds such as diphenyl-methane and triphenylmethane. [Pg.410]

According to these data, which structural features provide stabilization of radial centers Determine the level of agreement between these data and the radical stabilization energies given in Table 12.7 if the standard C—H bond dissociation energy is taken to be 98.8 kcal/mol. (Compare the calculated and observed bond dissociation energies for the benzyl, allyl, and vinyl systems.)... [Pg.741]

The benzylic position in alkylbenzenes is analogous to the allylic position in alkenes. Thus a benzylic C—H bond, like an allylic one, is weaker than a C—H bond of an alkane, as the bond dissociation energies of toluene, propene, and 2-rnethylpropane attest ... [Pg.439]

Sulfones are thermally very stable compounds, diaryl derivatives being more stable than alkyl aryl sulfones which, in turn, are more stable than dialkyl sulfones allyl and benzyl substituents facilitate the homolysis by lowering the C-—S bond dissociation energy. Arylazo aryl sulfones, on heating in neutral or weakly basic media at 100 °C, yield an aryl and arenesulfonyl radical pair via a reversible one-bond fission followed by dediazoni-ation of the aryldiazenyl radical (see Scheme 2 below) °. However, photolysis provides a relatively easy method for generating sulfonyl radicals from compounds containing the SO2 moiety. [Pg.1094]

The hydroxyl group of alcohol weakens the a-C—H bond. Therefore, free radicals attack preferentially the a-C—H bonds of the secondary and primary alcohols. The values of bond dissociation energy (BDE) of C—H bonds in alcohols are presented in Table 7.1. The BDE values of C—H bonds of the parent hydrocarbons are also presented. It is seen from comparison that the hydroxyl group weakens BDE of the C—H bond by 23.4 kJ mol 1 for aliphatic alcohols and by 8.0 kJ mol 1 for allyl and benzyl alcohols. [Pg.288]

The semiempirical AMI MO method has been used to calculate heats of formation of a series of m- and p-substituted benzene and toluene derivatives ArY and ArCHaY, and their phenyl or benzyl cations, anions, and radicals heterolytic and homolytic bond dissociation energies (BDEs) and electron transfer energies for the ions have also been calculated and the relationship A//het = A//et-I-AWhomo has been confirmed (it being noted that A//homo is insensitive to ring substituents). The linear relationship found between and the appropriate HOMO or LUMO... [Pg.352]

TABLE 5. NO—H bond dissociation energy values of X-aryl-substituted Ai-hydroxyphthaUmides (X-HPIs), listed with the Hammett p values (vs. ct+) and h/ d ratios obtained in the oxidation of substituted benzyl alcohols using the X-HPIs/Co(II)MCBA/02 system in MeCN solution at 25 °C... [Pg.719]

Calculate CH bond dissociation energies in propene and in toluene, leading to allyl and benzyl radicals, respectively. (The energy of hydrogen atom is given at right.) Is bond dissociation easier or more difficult in these systems relative to bond dissociation in 3-ethylpentane (methyl CH) Examine spin density surfaces for allyl and benzyl radicals. Draw Lewis structures that account for the electron distribution in each radical. Does spin delocalization appear to stabilize radicals in the same way charge delocalization stabilizes ions ... [Pg.289]

Tables 9.3 and 9.4 list selected bond dissociation energies and radical heats of formation. Note particularly that the decrease in energy required to remove hydrogen in the series methane, primary, secondary, tertiary, parallels increasing radical stability, and that aldehydic, allylic, and benzylic hydrogens have bond dissociation energies substantially lower than do alkyl hydrogens. Tables 9.3 and 9.4 list selected bond dissociation energies and radical heats of formation. Note particularly that the decrease in energy required to remove hydrogen in the series methane, primary, secondary, tertiary, parallels increasing radical stability, and that aldehydic, allylic, and benzylic hydrogens have bond dissociation energies substantially lower than do alkyl hydrogens.
The cationic polymerization of isobutylene (12) and styrene (13) is initiated readily by Et2AlCl in the presence of an alkyl halide, RC1. The interaction of the catalyst and cocatalyst is presumed to produce the carbonium ion R+, which initiates polymerization, and the corresponding gegenion Et2AlCl2". Alkyl halides with low R-Cl bond dissociation energies—e.g. tertiary, substituted allylic, and benzylic halides—are among the most effective cocatalysts. [Pg.316]

The C-H bond dissociation energies (BDEs) decrease in the sequence vinylic phenylic > primary > secondary > tertiary > allylic > pentadienylic = benzylic considerably (Table 6.3). [Pg.111]

Of this group only benzyl chloride is not an aryl halide its halogen is not attached to the aromatic ring but to an. v/r -hybridized carbon. Benzyl chloride has the weakest carbon-halogen bond, its measured carbon-chlorine bond dissociation energy being only 293 kJ/mol (70 kcal/mol). Homolytic cleavage of this bond produces a resonance-stabilized benzyl radical. [Pg.656]

As mentioned with benzyl groups, an allylic center is also quite susceptible to autoxidation chemistry (Fig. 109). The allylic hydrogen has a weak C-H bond dissociation energy due to the resonance stabilization energy of the resulting allylic radical (157). [Pg.107]


See other pages where Benzylic bond dissociation energy is mentioned: [Pg.55]    [Pg.55]    [Pg.14]    [Pg.692]    [Pg.237]    [Pg.31]    [Pg.102]    [Pg.102]    [Pg.163]    [Pg.821]    [Pg.87]    [Pg.172]    [Pg.173]    [Pg.133]    [Pg.911]    [Pg.295]    [Pg.911]    [Pg.623]    [Pg.717]    [Pg.83]    [Pg.110]    [Pg.110]    [Pg.75]    [Pg.101]    [Pg.456]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Benzyl halides, bond dissociation energies

Benzylic bonds

Bond dissociation energy

Bonds bond dissociation energies

Dissociative bond energy

© 2024 chempedia.info