Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzyl halides catalysts, cobalt complexes

Carbonvlation of Benzyl Halides. Several organometallic reactions involving anionic species in an aqueous-organic two-phase reaction system have been effectively promoted by phase transfer catalysts(34). These include reactions of cobalt and iron complexes. A favorite model reaction is the carbonylation of benzyl halides using the cobalt tetracarbonyl anion catalyst. Numerous examples have appeared in the literature(35) on the preparation of phenylacetic acid using aqueous sodium hydroxide as the base and trialkylammonium salts (Equation 1). These reactions occur at low pressures of carbon monoxide and mild reaction temperatures. Early work on the carbonylation of alkyl halides required the use of sodium amalgam to generate the cobalt tetracarbonyl anion from the cobalt dimer(36). [Pg.146]

With cobalt complex catalysts, in polar, aprotic solvents like DME it is often possible to get a-keto acids by controlled double carbonylation874-877. Alternatively, a-hydroxy acids are formed when benzyl halides are carbonylated in the presence of calcium hydroxide, in aqueous media878. Presumably the initially formed a-keto acid is reduced in the Meerwein-Ponndorf fashion to give the a-hydroxy group878. [Pg.754]

Phase-transfer catalysis has been found to be a useful tool for promoting carbonylation reactions under mild conditions [31]. Examples of this are the cyanonickel(ll) complex phase-transfer catalyzed carbonylation of allyl halides to acids [32], and the conversion of benzylic halides and methyl iodide to acids using cobalt carbonyl as the catalyst [33]. [Pg.152]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

Vanhoye and coworkers [402] synthesized aldehydes by using the electrogenerated radical anion of iron pentacarbonyl to reduce iodoethane and benzyl bromide in the presence of carbon monoxide. Esters can be prepared catalytically from alkyl halides and alcohols in the presence of iron pentacarbonyl [403]. Yoshida and coworkers reduced mixtures of organic halides and iron pentacarbonyl and then introduced an electrophile to obtain carbonyl compounds [404] and converted alkyl halides into aldehydes by using iron pentacarbonyl as a catalyst [405,406]. Finally, a review by Torii [407] provides references to additional papers that deal with catalytic processes involving complexes of nickel, cobalt, iron, palladium, rhodium, platinum, chromium, molybdenum, tungsten, manganese, rhenium, tin, lead, zinc, mercury, and titanium. [Pg.368]


See other pages where Benzyl halides catalysts, cobalt complexes is mentioned: [Pg.434]    [Pg.232]    [Pg.108]    [Pg.120]    [Pg.331]    [Pg.1118]    [Pg.100]    [Pg.2303]   
See also in sourсe #XX -- [ Pg.270 ]

See also in sourсe #XX -- [ Pg.270 ]

See also in sourсe #XX -- [ Pg.6 , Pg.270 ]




SEARCH



Benzyl halides

Benzyllic halides

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt complex catalysts

Cobalt complexes halides

Cobalt halides

Halide catalysts

Halide complexation

Halides complex

© 2024 chempedia.info