Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzonitrile oxide cycloaddition reactions

Bravo et al. studied the reaction of various ylides with monooximes of biacetyl and benzil. Dimethylsulfonium methylide and triphenylarsonium methylide gave 2-isoxazolin-5-ol and isoxazoles, with the former being the major product. Triphenylphosphonium methylide and dimethyloxosulfonium methylide gave open-chain products (Scheme 135) (70TL3223, 72G395). The cycloaddition of benzonitrile oxide to enolic compounds produced 5-ethers which could be cleaved or dehydrated (Scheme 136) (70CJC467, 72NKK1452). [Pg.101]

A variety of 1-azirines are available (40-90%) from the thermally induced extrusion (>100 °C) of triphenylphosphine oxide from oxazaphospholines (388) (or their acyclic betaine equivalents), which are accessible through 1,3-dipolar cycloaddition of nitrile oxides (389) to alkylidenephosphoranes (390) (66AG(E)1039). Frequently, the isomeric ketenimines (391) are isolated as by-products. The presence of electron withdrawing functionality in either or both of the addition components can influence the course of the reaction. For example, addition of benzonitrile oxide to the phosphorane ester (390 = C02Et) at... [Pg.89]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

Compound 384 derived from the reaction of two molecules of benzonitrile oxide (341) with one of BCP (3). Its formation can be explained with the cycloaddition of a second molecule of 341 to the isoxazoline Ml to give the isoxazolidine M5, which undergoes a thermal rearrangement to 384 (Scheme 54). [Pg.62]

Benzocyclobutene, when generated by oxidation of its iron tricarbonyl complex, can function as the dipolarophile in 1,3-dipolar cycloaddition reactions with arylnitrile oxides (Scheme 113).177 Unfortunately the synthetic versatility of this type of process is limited because of the unreactivity of other 1,3-dipolar species such as phenyl azide, benzonitrile N-phenylimide, and a-(p-tolyl)benzylidenamine N-oxide.177... [Pg.369]

Formation of mixtures of the above type, which is common with internal olefins, do not occur with many functionalized alkenes. Thus, tertiary cinnamates and cinnamides undergo cycloadditions with benzonitrile oxides to give the 5-Ph and 4-Ph regioisomers in a 25-30 75-70 ratio. This result is in contrast to that obtained when methyl cinnamate was used as the dipolarophile (177). 1,3-Dipolar cycloaddition of nitrile oxides to ethyl o -hydroxycinnamate proceeds regiose-lectively to afford the corresponding ethyl fra s-3-aryl-4,5-dihydro-5-(2-hydro-xyphenyl)-4-isoxazolecarboxylates 36 (178). Reaction of 4-[( )-(2-ethoxycarbo-nylvinyl)] coumarin with acetonitrile oxide gives 37 (R = Me) and 38 in 73% and 3% yields, respectively, while reaction of the same dipolarophile with 4-methoxy-benzonitrile oxide affords only 37 (R = 4-MeOCr>H4) (85%) (179). [Pg.23]

Cycloaddition of 2-alkoxy-l,3-butadienes, H2C=C(OAlk)CH=CH2, and nitrile oxides to give isoxazolines 51 proceeds with the participation of only one of the conjugated C=C bonds. With benzonitrile oxide, only the vinyl group in alkoxydienes participates in cycloaddition reactions while in the case of phenyl-glyoxylonitrile oxide both double bonds react (222). Nitrile oxides RC=NO react with iron complexed trienes 52. The reaction proceeds with good yield and diastereoselectivity ( 90/10) to give isoxazolines 53 (223). [Pg.28]

Dipolar cycloaddition of 2,4-(trimethylsilyl)- and 2,4-(trimethylgermyl)-substituted thiophene-1,1-dioxides as well as silylated 2,2 -bithiophene-1,1-dioxides was investigated. It was shown that only the C(4)=C(5) double bond of 2,4-disubstituted thiophene-1,1-dioxides interacts with acetonitrile oxide to give thienoisoxazoline dioxides. Bithiophene derivatives were inactive or their reaction with nitrile oxide was accompanied by desilylation. Cycloaddition of benzonitrile oxide with all mentioned sulfones did not occur. The molecular structure of 3a-methyl-5.6a-bis(trimethylgermyl)-3a,6a-dihydrothieno 2.3-c/ isoxazole 4,4-dioxide was established by X-ray diffraction (263). ... [Pg.38]

Face selectivity in the 1,3-dipolar cycloaddition reactions of benzonitrile oxide and its p-substituted derivatives with 5-substituted adamantane-2-thiones,... [Pg.57]

Benzonitrile oxide and mesitonitrile oxide undergo 1,3-dipolar cycloaddition reactions with 1,3,5-triphosphinines under mild conditions to afford fused heterocyclic compounds (Scheme 1.33), for example, 192 and 193. Oxaphosphazoles and oxadiphospholes have become accessible by thermal fragmentation reactions of such fused heterocyclic compounds (358). [Pg.59]

The reaction of 1,1-difluoroallene (25) with benzonitrile oxide (79c) gave a mixture of the regioisomers (56 44), whereas the cycloaddition with 2,4,6-trimethylbenzoni-trile oxide (79b) afforded only one regioisomer in high yield [72b]. [Pg.756]

On the other hand, reactions of nitrile oxides with 1,2-disubstituted olefins are slower and regioselectivity usually was not so high. For example, benzonitrile oxides, obtained from the corresponding chlorooximes 167, undergo 1,3-dipolar cycloaddition reaction with methyl cinnamate to produce the 5-phenyl 168 and 4-phenyl 169 regioisomers in approximately an 80 20 ratio °. However, use of A,iV-diethylcinnamamide as the dipolarophile... [Pg.256]


See other pages where Benzonitrile oxide cycloaddition reactions is mentioned: [Pg.779]    [Pg.781]    [Pg.786]    [Pg.626]    [Pg.628]    [Pg.633]    [Pg.68]    [Pg.89]    [Pg.95]    [Pg.132]    [Pg.429]    [Pg.264]    [Pg.20]    [Pg.24]    [Pg.26]    [Pg.35]    [Pg.37]    [Pg.40]    [Pg.42]    [Pg.50]    [Pg.53]    [Pg.59]    [Pg.65]    [Pg.67]    [Pg.716]    [Pg.86]    [Pg.236]    [Pg.531]    [Pg.793]    [Pg.886]   


SEARCH



Benzonitril

Benzonitril-oxid

Benzonitrile

Benzonitrile 1,2-cycloaddition

Benzonitrile oxide

Benzonitrile, reactions

Benzonitriles

Cycloaddition oxide

Cycloadditions oxidative

Oxidative cycloaddition

© 2024 chempedia.info