Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoin condensation mixed benzoins

Starting from the findings of the racemic cross-benzoin condensation [66], and assuming that aldehydes not accepted as donor substrates might still be suitable acceptor substrates, and vice versa, a mixed enzyme-substrate screening was performed in order to identify a biocatalytic system for the asymmetric cross-carboligation of aromatic aldehydes. For this purpose the reactions of 2-chloro-(40a), 2-methoxy- (40b) and 2-methylbenzaldehyde (40c), respectively, were studied with different enzymes in combination with benzaldehyde (Scheme 2.2.7.23) [67]. The three ortho-substituted benzaldehyde derivatives 40a-40c were... [Pg.407]

The selective donor-acceptor concept can be transferred to other ThDP-dependent enzymes. For example, enantiopure mixed benzoins were obtained when 2-chlorobenzaldehyde reacted with a variety of selective donor aldehydes in the presence of BAL [67]. By performing various cross-benzoin condensation reactions with this enzyme, not only new selective donors but also additional aldehydes reacting selectively as acceptors, such as 2-iodobenzaldehyde or 2,6-difluorobenzaldehyde, could be identified. Again all the mixed benzoins generated exhibited an R-configuration and were obtained with high to excellent enantiomeric excesses [69]. [Pg.408]

Crossed condensation of two aldehydes has been accomplished as in the preparation of p-methoxybenzoin. The condensation is reversible, as has been demonstrated by the preparation of mixed benzoins from benzoin and an aromatic aldehyde. ... [Pg.94]

Upon treating certain (but not all) aromatic aldehydes or glyoxals (a-keto aldehydes) with cyanide ion (CN ), benzoins (a-hydroxy-ketones or acyloins) are produced in a reaction called the benzoin condensation. The reverse process is called the retro-benzoin condensation, and it is frequently used for the preparation of ketones. The condensation involves the addition of one molecule of aldehyde to the C=0 group of another. One of the aldehydes serves as the donor and the other serves as the acceptor. Some aldehydes can only be donors (e.g. p-dimethylaminobenzaldehyde) or acceptors, so they are not able to self-condense, while other aldehydes (benzaldehyde) can perform both functions and are capable of self-condensation. Certain thiazolium salts can also catalyze the reaction in the presence of a mild base. This version of the benzoin condensation is more synthetically useful than the original procedure because it works with enolizable and non-enolizable aldehydes and asymmetric catalysts may be used. Aliphatic aldehydes can also be used and mixtures of aliphatic and aromatic aldehydes give mixed benzoins. Recently, it was also shown that thiazolium-ion based organic ionic liquids (Oils) promote the benzoin condensation in the presence of small amounts of triethylamine. The stereoselective synthesis of benzoins has been achieved using chiral thiazolium salts as catalysts. [Pg.54]

An anion may be formed from a symmetrical acid anhydride by using the carboxylate anion of the corresponding acid as the base. This anion may then be reacted with an aldehyde, such as benzaldehyde, to yield as the initial product a mixed anhydride. Dehydration and hydrolysis often follow to result in an a, P-un saturated acid. This is the Perkin reaction. In the benzoin condensation, benzaldehyde is treated with cyanide ion to form an anion, which then attacks another benzaldehyde molecule to form, after the elimination of the original cyanide ion, a 2-hydroxyketone. [Pg.269]

An asymmetric variant of a mixed acyloin or benzoin condensation using heterazolium catalysts has not yet been reported. However, enzymes have been shown to catalyze a number of mixed acyloin condensations efficiently [38,39, 40]. [Pg.1037]

It is found that benzoin condensation of aldehydes are strongly catalysed by a PTC (quaternary ammonium cyanide in a two phase system). In a similar way, acyloin condensations are easily effected by stirring aliphatic or aromatic aldehydes with a quaternary catalyst (PTC), N-laurylthiazolium bromide in aqueous phosphate buffer at room temperature. The aromatic aldehydes reacted in a short time (about 5 min). However, aliphatic aldehydes require longer time (5-10 hr) for completion. Mixtures of aliphatic and aryl aromatic aldehydes give mixed a-hydroxy ketones. ... [Pg.127]

Mix 10 grammes of benzaldehyde with 20 grammes of alcohol and treat the mixture with a solution of 2 grammes of potassium cyanide and 5 c.c. of water. Boil on the water-bath for one hour (reflux condenser). The hot solution is poured into a beaker and allowed to cool slowly the crystals separating out are filtered off, washed with alcohol, and dried on the water-bath. For conversion into benzil (see next preparation), they need not be recrystallised. In order to obtain perfectly pure benzoin, a small portion of the crude product is recrystallised from a little alcohol in a test-tube. Melting-point, 1340- Yield, about 90% of the theory. [Pg.276]


See other pages where Benzoin condensation mixed benzoins is mentioned: [Pg.96]    [Pg.67]    [Pg.1397]    [Pg.54]    [Pg.196]    [Pg.197]    [Pg.54]    [Pg.13]    [Pg.9]   
See also in sourсe #XX -- [ Pg.196 , Pg.197 ]




SEARCH



Benzoin

Benzoin condensation

Benzoine condensation

Condenser mixing

Mixed benzoins

© 2024 chempedia.info