Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzaldehyde lithium isobutyrophenone enolate reaction

In the aldol-Tishchenko reaction, a lithium enolate reacts with 2 mol of aldehyde, ultimately giving, via an intramolecular hydride transfer, a hydroxy ester (51) with up to three chiral centres (R, derived from rYhIO). The kinetics of the reaction of the lithium enolate of p-(phenylsulfonyl)isobutyrophenone with benzaldehyde have been measured in THF. ° A kinetic isotope effect of fee/ o = 2.0 was found, using benzaldehyde-fil. The results and proposed mechanism, with hydride transfer rate limiting, are supported by ab initio MO calculations. [Pg.13]

The mechanism of the aldol-Tishchenko reaction has been probed by determination of kinetics and isotope effects for formation of diol-monoester on reaction between the lithium enolate of p-(phenylsulfonyl)isobutyrophenone (LiSIBP) and two molecules of benzaldehyde. ". The results are consistent with the formation of an initial lithium aldolate (25) followed by reaction with a second aldehyde to form an acetal (26), and finally a rate-limiting intramolecular hydride transfer (Tishchenko... [Pg.355]

The mixed Tishchenko reaction involves the reaction of the aldol prodnct 113 from one aldehyde with another aldehyde having no a-hydrogens to yield an ester The products were proposed to be formed through an aldol step (equation 33), followed by addition of another aldehyde (equation 34) and an intramolecular hydride transfer (equation 35). However, several aspects of this mechanism need to be clarified. As part of the continuing mechanistic studies carried out by Streitwieser and coworkers on reactions of alkali enolates ", it was found that the aldol-Tishchenko reaction between certain lithium eno-lates and benzaldehyde proceeded cleanly in thf at room temperature". Reaction of the lithium enolate of isobutyrophenone (Liibp) with 1 equiv of benzaldehyde in thf at — 65 °C affords a convenient route to the normal aldol product 113 (R = R" = Ph, R = Me). At room temperature, however, the only product observed after acid workup was the diol-monoester 116, apparently derived from the corresponding lithium ester alcoholate (115, R = R" = Ph, R = Me), which was quantitatively transformed into 116 after quenching. As found in other systems", only the anti diol-monoester diastereomer was formed. [Pg.42]


See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Benzaldehyde, reactions

Benzaldehydes reaction

Enolate lithium

Enolates lithium

Isobutyrophenone enolate

Lithium enolates reactions

© 2024 chempedia.info