Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

B2 Group

Figure 2.7 The (top) a1 and (bottom) b2 group orbitals formed from the 1 s atomic orbitals of the two hydrogen atoms of the water molecule... Figure 2.7 The (top) a1 and (bottom) b2 group orbitals formed from the 1 s atomic orbitals of the two hydrogen atoms of the water molecule...
A similar treatment of the B2 group gives a simple 2x2 determinant not involving the parameters m and n and with roots /J. In fact, the b2 orbitals... [Pg.41]

Analysis of the pH-dependence of the kinetic parameters and competitive inhibitor K values indicates that the p/fa values of the Bi and B2 groups are 7.6 and 6.0, respectively.791 These groups have not been identified, but the observed low degree of deuterium transfer ( 8%)80 82) suggests that the basic group Bi is polyprotic and, therefore, may be the -amino group of a lysine residue. [Pg.188]

Figure B2.4.1. Proton NMR spectra of the -dimethyl groups in 3-dimethylamino-7-methyl-l,2,4-benzotriazine, as a fiinction of temperature. Because of partial double-bond character, there is restricted rotation about the bond between the dunethylammo group and the ring. As the temperature is raised, the rate of rotation around the bond increases and the NMR signals of the two methyl groups broaden and coalesce. Figure B2.4.1. Proton NMR spectra of the -dimethyl groups in 3-dimethylamino-7-methyl-l,2,4-benzotriazine, as a fiinction of temperature. Because of partial double-bond character, there is restricted rotation about the bond between the dunethylammo group and the ring. As the temperature is raised, the rate of rotation around the bond increases and the NMR signals of the two methyl groups broaden and coalesce.
Figure B2.4.1 illustrates this type of behaviour. If there is no rotation about the bond joining the N, N -dimethyl group to the ring, the proton NMR signals of the two methyl groups will have different chemical shifts. If the rotation were very fast, then the two methyl enviromnents would be exchanged very quickly and only a single, average, methyl peak would appear in the proton NMR spectrum. Between these two extremes, spectra like those in figure B2.4.1 are observed. At low temperature, when the rate is slow, two... Figure B2.4.1 illustrates this type of behaviour. If there is no rotation about the bond joining the N, N -dimethyl group to the ring, the proton NMR signals of the two methyl groups will have different chemical shifts. If the rotation were very fast, then the two methyl enviromnents would be exchanged very quickly and only a single, average, methyl peak would appear in the proton NMR spectrum. Between these two extremes, spectra like those in figure B2.4.1 are observed. At low temperature, when the rate is slow, two...
Figure B2.4.2. Eyring plot of log(rate/7) versus (1/7), where Jis absolute temperature, for the cis-trans isomerism of the aldehyde group in fiirfiiral. Rates were obtained from tln-ee different experiments measurements (squares), bandshapes (triangles) and selective inversions (circles). The line is a linear regression to the data. The slope of the line is A H IR, and the intercept at 1/J = 0 is A S IR, where R is the gas constant. A and A are the enthalpy and entropy of activation, according to equation (B2.4.1)... Figure B2.4.2. Eyring plot of log(rate/7) versus (1/7), where Jis absolute temperature, for the cis-trans isomerism of the aldehyde group in fiirfiiral. Rates were obtained from tln-ee different experiments measurements (squares), bandshapes (triangles) and selective inversions (circles). The line is a linear regression to the data. The slope of the line is A H IR, and the intercept at 1/J = 0 is A S IR, where R is the gas constant. A and A are the enthalpy and entropy of activation, according to equation (B2.4.1)...
Figure B2.4.8. Relaxation of two of tlie exchanging methyl groups in the TEMPO derivative in figure B2.4.7. The dotted lines show the relaxation of the two methyl signals after a non-selective inversion pulse (a typical experunent). The heavy solid line shows the recovery after the selective inversion of one of the methyl signals. The inverted signal (circles) recovers more quickly, under the combined influence of relaxation and exchange with the non-inverted peak. The signal that was not inverted (squares) shows a characteristic transient. The lines represent a non-linear least-squares fit to the data. Figure B2.4.8. Relaxation of two of tlie exchanging methyl groups in the TEMPO derivative in figure B2.4.7. The dotted lines show the relaxation of the two methyl signals after a non-selective inversion pulse (a typical experunent). The heavy solid line shows the recovery after the selective inversion of one of the methyl signals. The inverted signal (circles) recovers more quickly, under the combined influence of relaxation and exchange with the non-inverted peak. The signal that was not inverted (squares) shows a characteristic transient. The lines represent a non-linear least-squares fit to the data.
CFIDF end group, no selective reaction would occur on time scales above 10 s. Figure B2.5.18. In contrast to IVR processes, which can be very fast, the miennolecular energy transfer processes, which may reduce intennolecular selectivity, are generally much slower, since they proceed via bimolecular energy exchange, which is limited by the collision frequency (see chapter A3.13). [Pg.2137]

In eontrast, the n ==> 71 transition has a ground-exeited state direet produet of B2 X Bi = A2 symmetry. The C2v s point group eharaeter table elearly shows that the eleetrie dipole operator (i.e., its x, y, and z eomponents in the moleeule-fixed frame) has no eomponent of A2 symmetry thus, light of no eleetrie field orientation ean induee this n ==> 71 transition. We thus say that the n ==> 71 transition is El forbidden (although it is Ml allowed). [Pg.411]

The functions put into the determinant do not need to be individual GTO functions, called Gaussian primitives. They can be a weighted sum of basis functions on the same atom or different atoms. Sums of functions on the same atom are often used to make the calculation run faster, as discussed in Chapter 10. Sums of basis functions on different atoms are used to give the orbital a particular symmetry. For example, a water molecule with symmetry will have orbitals that transform as A, A2, B, B2, which are the irreducible representations of the C2t point group. The resulting orbitals that use functions from multiple atoms are called molecular orbitals. This is done to make the calculation run much faster. Any overlap integral over orbitals of different symmetry does not need to be computed because it is zero by symmetry. [Pg.20]

We have seen that any two of the C2, ( Jxz), (r Jyz) elements may be regarded as generating elements. There are four possible combinations of + 1 or — 1 characters with respect to these generating elements, + 1 and + 1, + 1 and -1,-1 and +1,-1 and —1, with respect to C2 and (tJxz). These combinations are entered in columns 3 and 4 of the C2 character table in Table A.l 1 in Appendix A. The character with respect to / must always be + 1 and, just as (r Jyz) is generated from C2 and (tJxz), the character with respect to (r Jyz) is the product of characters with respect to C2 and (tJxz). Each of the four rows of characters is called an irreducible representation of the group and, for convenience, each is represented by a symmetry species Aj, A2, or B2. The A] species is said to be totally symmetric since all the characters are + 1 the other three species are non-totally symmetric. [Pg.88]

Methylation of avermectins B and B2 leads to the corresponding derivatives of the A series (49). A procedure involving the oxidation of the 5-methoxy group with mercuric acetate and NaBH reduction of the 5-keto-intermediate allows the conversion of the A to the B components (50). The 23-hydroxy group of the "2" components, after selective protection of the other secondary hydroxy groups, is converted to a thionocarbonate, which can be elirninated to give the 22,23-double bond of the "1" components alternatively it can be reduced with tributyltin hydride to the 22,23-dihydro derivatives (= ivermectins) (51). [Pg.284]

CH3I should approach the enolate from the direction that simultaneously allows its optimum overlap with the electron-donor orbital on the enolate (this is the highest-occupied molecular orbital or HOMO), and minimizes its steric repulsion with the enolate. Examine the HOMO of enolate A. Is it more heavily concentrated on the same side of the six-membered ring as the bridgehead methyl group, on the opposite side, or is it equally concentrated on the two sides A map of the HOMO on the electron density surface (a HOMO map ) provides a clearer indication, as this also provides a measure of steric requirements. Identify the direction of attack that maximizes orbital overlap and minimizes steric repulsion, and predict the major product of each reaction. Do your predictions agree with the thermodynamic preferences Repeat your analysis for enolate B, leading to product B1 nd product B2. [Pg.169]


See other pages where B2 Group is mentioned: [Pg.130]    [Pg.31]    [Pg.436]    [Pg.840]    [Pg.892]    [Pg.130]    [Pg.31]    [Pg.436]    [Pg.840]    [Pg.892]    [Pg.1135]    [Pg.1988]    [Pg.2093]    [Pg.2108]    [Pg.2108]    [Pg.573]    [Pg.330]    [Pg.410]    [Pg.280]    [Pg.49]    [Pg.49]    [Pg.61]    [Pg.462]    [Pg.463]    [Pg.463]    [Pg.66]    [Pg.157]    [Pg.25]    [Pg.30]    [Pg.320]    [Pg.720]    [Pg.420]    [Pg.311]    [Pg.322]    [Pg.317]    [Pg.641]    [Pg.307]    [Pg.132]    [Pg.279]    [Pg.341]    [Pg.372]   


SEARCH



Group B2—Probable Human Carcinogens

© 2024 chempedia.info