Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aziridines substrates

The cz5-aziridine substrate shows, as expected on the basis of this model, predominant formation of the trans-cyclopropane product. The starting materials for this MIRC reaction can readily be obtained from the aziridine esters by reduction to the corresponding aldehyde and a subsequent Knoevenagel reaction with malonate ester (Scheme 25) [34]. [Pg.108]

Polymerization of racemic aziridines afforded soluble polymers, whereas the use of enantiopure aziridines provided sparingly soluble polymers. KHMDS serves to deprotonate the primary sulfonamide initiator, providing an amide anion, which then functions as a nucleophile to promote the ring-opening polymerization of the aziridine. The polymerization kinetics were shown to feature a first-order dependence on both the aziridine substrate and the anionic initiator. [Pg.327]

The ring opening of aziridine using arenes as nucleophiles was first reported by Yadav et a. [89]. Reaction is catalyzed by In(OTf)3 and regioselectivity is highly favored toward attack on the benzylic carbon of the aziridine substrate (Figure 8.46). [Pg.403]

The Wenker aziridine synthesis entails the treatment of a P-amino alcohol 1 with sulfuric acid to give P-aminoethyl sulfate ester 2 which is subsequently treated with base to afford aziridine 3. Before the discovery of the Mitsunobu reaction, wbicb transforms an amino alcohol into an aziridine in one step under very mild conditions, the Wenker reaction was one of the most convenient methods for aziridine synthesis. However, due to the involvement of strong acid and then strong base, its utility has been limited to substrates without labile functionalities. [Pg.63]

As described in Section 1.7.1, the utility of the Wenker reaction is limited to substrates without labile functionalities because of the involvement of strong acid and then strong base. The Fanta group prepared a variety of aziridines by taking advantage of the Wenker reaction.For example, 6-aza-bicyclo[3.1.0]hexane (14) was produced from the ring-closure of ( )-rra s-2-aminocyclopentanol hydrochloride (13). In a similar fashion, sulfate ester 16 was prepared from A-methyl dl-trans- >-ssmnoA-hydroxytetrahydrofuran (15). Subsequent treatment of sulfate ester 16 with NaOH then delivered aziridine I . " Additional examples of Wenker aziridine synthesis may also be found in references 15-17. [Pg.65]

The substrate scope is limited, as electron-withdrawing groups (X = p-N02 or p-CF3) on the aromatic substituent are not tolerated. However, this route does provide valuable intermediates to unnatural a-amino phosphonic acid analogues and the sulfimine can readily be oxidized to the corresponding sulfonamide, thereby providing an activated aziridine for further manipulation, or it can easily be removed by treatment with a Grignard reagent. [Pg.26]

Catalysts prepared either from VAPOL (109) or from VANOL (110) ligands and triphenylborate were found to catalyze the asymmetric aziridination efficiently. Good to high yields, excellent enantioselectivities, and cis diastereoselectivities were observed with all the reported substrates, which included aromatic, heteroaromatic and aliphatic imines (Table 1.14). [Pg.28]

Ruano has reported substrate-controlled asymmetric ylide aziridination by treatment of enantiopure sulfinyl imines 117 with dimethyloxosulfonium methylide 118 to form terminal aziridines [63], The chiral tert-butylsulfinyl group was shown... [Pg.30]

Stockman has reported the preparation of alkyl-, aryl-, and vinyl-disubstituted aziridines with good diastereoselectivities and in good yields through treatment of tert-butylsulfmylimines with the ylide 119, derived from S-allyl tetrahydrothio-phenium bromide (Scheme 1.39) [64]. A range of substrates were tolerated, including heterocyclic, aromatic, and aliphatic substrates (Table 1.16). [Pg.32]

Amino alcohols are also good substrates for aziridination under Mitsunobu conditions. The rfs-1,4-amino alcohols 48, obtained by reductive cleavage of the nitrogen-oxygen bonds of the hetero Diels-Alder adducts 47, underwent syn-SN2 -type displacement on treatment with PPh3 and DEAD to give cyclic vinylaziridines 49 (Scheme 2.15) [27]. [Pg.44]

Unsaturated oximes are attractive substrates for aziridine synthesis. Treatment of oxime 77 with Red-Al yielded vinylaziridines 78, 79, and 80, in various ratios depending on the E/Z ratio of the starting oxime 77 (Scheme 2.22) [38]. This reaction should proceed through abstraction of HA, Hb, or He in the intermediate 81, followed by hydride reduction of the resulting 2H-azirines 82-84. [Pg.47]

With Sulfur Nucleophiles N-Carboxy-protected aziridine-2-carboxylates react with thiols to give P-mercapto-ot-amino acid derivatives. The reaction is usually catalyzed by BF3 and the yields range from fair to excellent [15, 16, 108-111]. With N-unprotected 3-substituted aziridine-2-carboxylates, the ring-opening with thiols usually takes place with anti stereoselectivity, especially in the case of the C-3 aliphatic substituted substrates. In cases in which C-3 is aromatic, however, the stereoselectivity has been found to be a function of the substitution pattern on the aromatic ring 3-p-methoxy ph eri yl-su bs li In led aziridines 143a (Scheme 3.51) and... [Pg.93]

Although an efficient reaction, the Rees-Atkinson aziridination method suffers from two drawbacks the necessity for an N-phthalimido or N-quinazolinonyl substituent and the use of a highly toxic oxidant. Thus, recent efforts (especially in these green times) have focussed upon more benign methods for generation of the key nitrenoids. Yudin demonstrated the power of electrochemistry with a novel method that removes the need for an added metal oxidant, demonstrating an unusually and impressively broad substrate tolerance compared to many alkene aziridination reactions (Scheme 4.14) [10]. [Pg.122]

The metal catalyst is not absolutely required for the aziridination reaction, and other positive nitrogen sources may also be used. After some years of optimization of the reactions of alkenes with positive nitrogen sources in the presence of bromine equivalents, Sharpless et al. reported the utility of chloramine-T in alkene aziridinations [24]. Electron-rich or electron-neutral alkenes react with the anhydrous chloramines and phenyltrimethylammonium tribromide in acetonitrile at ambient temperature, with allylic alcohols being particularly good substrates for the reaction (Schemes 4.18 and 4.19). [Pg.125]

Another conceptually unique approach in alkene aziridination has come from Johnston s labs. These workers shrewdly identified organic azides as nitrene equivalents when these compounds are in the amide anion/diazonium resonance form. Thus, when a range of azides were treated with triflic acid and methyl vinyl ketone at 0 °C, the corresponding aziridines were obtained, in synthetically useful yields. In the absence of the Bronsted acid catalyst, cycloaddition is observed, producing triazolines. The method may also be adapted, through the use of unsaturated imi-des as substrates, to give anti-aminooxazolidinones (Scheme 4.25) [32]. [Pg.129]

In the presence of a catalytic amount (10 %) of PTAB and anhydrous Chloramine-T (1.1 equiv.), a variety of olefins have been readily converted into the corresponding aziridines in acetonitrile at room temperature (Scheme 12.13). This method exhibits broad substrate scope, and the yields are usually high (Table 12.3) [42]. [Pg.455]

Both regioisomers were observed in aminohydroxylation of almost all the substrates that were examined. By taking advantage of their high combined yields, as well as the racemic nature of the aminohydroxylation products, a one-pot, two-step synthesis of sulfonyl aziridines through the cyclodehydration of hydroxysulfona-mides was developed (Scheme 12.18). [Pg.460]

Entry Substrate ratio, (method)[b] Aziridine Scale (mmol) Yield1 1 (mp)... [Pg.464]

Some substrates (e.g., 1,3-dichlorobutane) can be attacked at two or more positions. We may call these ambident substrates. In the example given, there happen to be two leaving groups in the molecule, but there are two kinds of substrates that are inherently ambident (unless symmetrical). One of these, the ally lie type, has already been discussed (p. 421). The other is the epoxy (or the similar aziridine" or episulfide) substrate." ... [Pg.461]

Aziridines can be prepared directly from double-bond compounds by photolysis or thermolysis of a mixture of the substrate and an azide. The reaction has been carried out with R = aryl, cyano, EtOOC, and RSO2, as well as other groups. The reaction can take place by at least two pathways. In one, the azide is converted to a nitrene, which adds to the double bond in a manner analogous to that of carbene addition (15-62). Reaction of NsONHC02Et/ CuO [Ns = A(/7-toluenesulfonyl-inimo)] and a conjugated ketone, for example, leads to the A-carboethoxy aziridine derivative.Calcium oxide has also been used to generate the nitrene.Other specialized reagents have also been used." ... [Pg.1057]

Pyrazolines (51) can be converted to cyclopropane and N2 on photolysis""" or pyroiysis. The tautomeric 2-pyrazolines (52), which are more stable than 51 also give the reaction, but in this case an acidic or basic catalyst is required, the function of which is to convert 52 to 51." In the absence of such catalysts, 52 do not react/ In a similar manner, triazolines (53) are converted to aziridines." Side reactions are frequent with both 51 and 53, and some substrates do not give the reaction at all. However, the reaction has proved synthetically useful in many cases. In general, photolysis gives better yields and fewer side reactions than pyrolysis with both 51 and 53. S/Z-Pyrazoles" " (54) are stable to heat, but in some cases can be converted to... [Pg.1353]

Special mention must be made of the control of the regioselectivity of the ring opening of AT-acylaziridines 38 at an organic-aqueous interface (Scheme 26) [36]. The fatty acid chains and the phenoxy substituent will orient the substrate such that the unsubstituted aziridine carbon atom points to the aqueous layer... [Pg.108]

An intramolecular ring expansion of aziridine esters can be accomplished by installing an appropriate nucleophilic entity in these substrates. Conversion of the ester moiety into carboxamides derived from aminomalonate ester gives compounds 44 containing the requisite nucleophilic site in the malonate moiety (Scheme 35). [Pg.112]

This reaction to bicyclic compounds containing the aziridine group was also observed for other amides, viz., 44c-f, when treated with a catalytic amount of f-BuOK in THF or MeONa in methanol. LDA treatment of the tosyl-activated substrate 44 a gave the five-membered ring product albeit in a low yield (31 %). Remarkably, the carboxamide derived from the cz5-aziridine failed to react with base, probably due to steric hindrance. [Pg.114]

A polymer-supported version of our optimal ligand was also developed [52]. Its preparation involves attachment of aziridine carbinols to polymer-bound triphenylchloromethane (Scheme 40). This polymer-bound ligand 53 was almost equally effective in the enantioselective addition of diethylzinc to aromatic and aliphatic aldehydes with ee s ranging from 77-97% for the latter type of substrate [52]. It is of practical interest that this polymer-supported ligand could be reused without losing much of its efficiency. [Pg.116]

Iron-nitrene/imido complexes are proposed to be the reaction intermediates in nitrogen group transfer reactions. The nitrene group can be transferred to organic substrates. Aziridination and amination are the well-known nitrogen atom/group... [Pg.122]


See other pages where Aziridines substrates is mentioned: [Pg.134]    [Pg.33]    [Pg.65]    [Pg.75]    [Pg.121]    [Pg.134]    [Pg.33]    [Pg.65]    [Pg.75]    [Pg.121]    [Pg.13]    [Pg.10]    [Pg.15]    [Pg.32]    [Pg.35]    [Pg.96]    [Pg.413]    [Pg.427]    [Pg.456]    [Pg.466]    [Pg.605]    [Pg.1057]    [Pg.58]    [Pg.256]    [Pg.101]    [Pg.6]   
See also in sourсe #XX -- [ Pg.790 , Pg.791 ]




SEARCH



© 2024 chempedia.info