Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azide ions carbons

Azide ion ( N=N=N ) Sodium azide IS a reagent used for carbon-nitrogen bond formation The product IS an alkyl azide... [Pg.328]

Diphenylthiirene 1-oxide reacts with hydroxylamine to give the oxime of benzyl phenyl ketone (79JA390). The reaction probably occurs by addition to the carbon-carbon double bond followed by loss of sulfur monoxide (Scheme 80). Dimethylamine adds to the double bond of 2,3-diphenylthiirene 1,1-dioxide with loss of sulfur dioxide (Scheme 81) (75JOC3189). Azide ion gives seven products, one of which involves cleavage of the carbon-carbon bond of an intermediate cycloadduct (Scheme 81) (80JOC2604). [Pg.159]

The disulfide has a special interest as the catalyst in the carbon disulfide-catalyzed iodine-azide reaction. No perceptible nitrogen evolution will take place in a solution containing iodine and azide ions without the presence of a catalyst. Thiosulfates, sulfides, and many other sulfur compounds act as catalysts. In 1922 Browne et found that carbon disulfide is a powerful catalyst in this... [Pg.274]

Although a catalyst does not appear in the balanced equation for a reaction, the concentration of a homogeneous catalyst does appear in the rate law. For example, the reaction between the triiodide ion and the azide ion is very slow unless a catalyst such as carbon disulfide is present ... [Pg.686]

A number of studies have been reported concerning azide-isocyanide condensations to give tetrazoles. Early work by Beck and co-workers 18, 19) describes the addition of various isocyanides to metal azido species [Au(N3)4]", [Au(N3)2]", Au(PPh3)N3, and M(PPh3)2(N3)2, M = Pd, Pt, Hg. The products are carbon-bonded tetrazolato-metal complexes. It is not known whether metal isocyanide complexes are intermediates in these reactions. More recently inverse reactions with azide ion addition to metal isocyanide complexes were carried out, with similar results. From... [Pg.41]

Only low yields of the azide ion adduct are obtained from the reaction of simple tertiary derivatives in the presence of azide ion 2145 46 and it is not possible to rigorously determine the kinetic order of the reaction of azide ion, owing to uncertainties in the magnitude of specific salt effects on the rate constants for the solvolysis and elimination reactions. Therefore, these experiments do not distinguish between stepwise and concerted mechanisms for substitution reactions at tertiary carbon. [Pg.75]

Students of reaction mechanism will recognize intuitively that the difference between the narrow and broad borderline regions observed for nucleophilic substitution of azide ion at secondary and tertiary carbon (Fig. 2.2) is due to the greater steric hindrance to bimolecular nucleophilic substitution at the tertiary carbon. This leads to a large difference in the effects of an a-Me group on (s ) for the stepwise solvolysis and s ) for concerted bimolecular nucleophilic... [Pg.48]

Nucleophilic Substitution at Benzyl Derivatives. The sharp break from a stepwise to a concerted mechanism that is observed for nucleophilic substitution of azide ion at X-l-Y (Figs. 2.2 and 2.5) is blurred for nucleophilic substitution at the primary 4-methoxybenzyl derivatives (4-MeO,H)-3-Y. For example, the secondary substrate (4-MeO)-l-Cl reacts exclusively by a stepwise mechanism through the liberated carbocation intermediate (4-MeO)-T, which shows a moderately large selectivity toward azide ion ( az/ s = 100 in 50 50 (v/v) water/ trifluoroethanol). The removal of an a-Me group from (4-MeO)-l-Cl to give (4-MeO,H)-3-Cl increases the barrier to ionization of the substrate in the stepwise reaction relative to that for the concerted bimolecular substitution of azide ion. The result is that both of these mechanisms are observed concurrently for nucleophilic substitution of azide ion at (4-MeO,H)-3-Cl in water/acetone solvents. These concurrent stepwise and concerted nucleophilic substitution reactions of azide ion with (4-MeO,H)-3-Cl show that there is no sharp borderline between mechanisms for substitution at primary benzylic carbon, but instead a region of overlap where both mechanisms are observed. [Pg.57]

An important question is whether nucleophilic substitution at tertiary carbon proceeds though a carbocation intermediate that shows a significant chemical barrier to the addition of solvent and other nucleophiles. The yield of the azide ion substitution product from the reaction of 5-Cl is similar to that observed for the reactions of X-2-Y when this product forms exclusively by conversion of the preassociation complex to product. Therefore the carbocation 5 is too unstable to escape from an aqueous solvation shell and undergo diffusion-controlled trapping by azide ion. This result sets a lower limit of w fcj > -d 1.6 x 10 ° s (Scheme 2.4) " for addition of solvent to the ion pair intermediate 5" C1 . [Pg.60]

J. P. Richard, T. L. Amyes, and T. Vontor, Absence of Nucleophibc Assistance by Solvent and Azide Ion to the Reaction of Cumyl Derivatives Mechanism of Nucleophibc Substitution at Tertiary Carbon, J. Am. Chem. Soc. 1991, 113, 5871. [Pg.66]


See other pages where Azide ions carbons is mentioned: [Pg.10]    [Pg.275]    [Pg.166]    [Pg.411]    [Pg.411]    [Pg.109]    [Pg.122]    [Pg.299]    [Pg.208]    [Pg.110]    [Pg.565]    [Pg.664]    [Pg.732]    [Pg.41]    [Pg.44]    [Pg.45]    [Pg.47]    [Pg.48]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.58]    [Pg.60]    [Pg.65]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 ]




SEARCH



Azide ion

Azide ions nucleophilic substitution, benzylic carbon

Carbon ions

Carbonate ions

© 2024 chempedia.info