Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Autooxidation termination reactions

Autooxidation. Liquid-phase oxidation of hydrocarbons, alcohols, and aldehydes by oxygen produces chemiluminescence in quantum yields of 10 to 10 ° ein/mol (128—130). Although the efficiency is low, the chemiluminescent reaction is important because it provides an easy tool for study of the kinetics and properties of autooxidation reactions including industrially important processes (128,131). The light is derived from combination of peroxyl radicals (132), which are primarily responsible for the propagation and termination of the autooxidation chain reaction. The chemiluminescent termination step for secondary peroxy radicals is as follows ... [Pg.269]

Tertiary peroxyl radicals also produce chemiluminescence although with lower efficiencies. For example, the intensity from cumene autooxidation, where the peroxyl radical is tertiary, is a factor of 10 less than that from ethylbenzene (132). The chemiluminescent mechanism for cumene may be the same as for secondary hydrocarbons because methylperoxy radical combination is involved in the termination step. The primary methylperoxyl radical terminates according to the chemiluminescent reaction just shown for (36), ie, R = H. [Pg.269]

Each aromatic amine molecule, InH, terminates many free radical chains in autooxidation of alcohols and amines due to the ability of oxyperoxy and aminoperoxy radicals to oxidize InH as well as to reduce In to InH (JO. However, the coefficient of inhibition, f > 2, can be very often observed in oxidizing hydrocarbons too (2 ). Therefore, some reduction of aminyl radicals to InH proceeds in oxidizing hydrocarbons. To ellucidate the ways of such reduction we have studied the products and kinetics of the reactions of diphenylaminyl radical In. ... [Pg.87]

The formation of hydrogen peroxide by photolysis of natural waters is discussed in Chapter 6. It is also formed by illumination of some sands and semiconductor oxides (Kormann et al., 1988 see also Section 6.E.3). Other sources of H2O2 include formation in the gas phase of the troposphere by the self-termination (dismutation) reaction of OOH and the autooxidation of reduced transition metals such as iron (Equation 4.4). The formation and fate of H2O2 in the atmosphere has been reviewed (Gunz and Hoffmann, 1990 Sakugawa et al., 1990). [Pg.239]

In systems where such radicals appear (alcohols, amines, some unsaturated compounds), variable-valence metal ions manifests themselves as catalysts for chain termination (see Chapter 11). The reaction of the ions with peroxyl radicals appears also in the composition of the oxidation products, especially at the early stages of oxidation. For example, the only primary oxidation product of cyclohexane autooxidation is hydroperoxide the other products, in particular, alcohol and ketone, appear later as the decomposition products of hydroperoxide. In the presence of stearates of such metals as cobalt, iron, and manganese, all three products (ROOH, ROH, and ketone) appear immediately with the beginning of oxidation and in the initial period (when ROOH decomposition is insignificant), they are formed in parallel with a constant rate. The ratio of rates of their formation is determined by the catalyst. The reason for this behavior is evidently related to the fast reaction of R02 with the catalyst. Thus, the reaction of peroxyl radicals widi variable-valence ions manifests itself in the kinetics as well (the induction period appears imder certain conditions), and alcohol and ketone are formed in parallel with ROOH from R02 among the oxidation products. [Pg.460]


See other pages where Autooxidation termination reactions is mentioned: [Pg.95]    [Pg.191]    [Pg.708]    [Pg.99]    [Pg.113]    [Pg.304]    [Pg.224]    [Pg.440]    [Pg.106]    [Pg.165]    [Pg.362]    [Pg.921]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Autooxidation reaction

Reaction terminating

Reaction, terminal

Termination reaction

© 2024 chempedia.info