Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attractive Polymeric Ligands

Non-absorbed polymeric ligands that selectively sequester and remove dietary iron from the GI tract would offer an attractive method for the... [Pg.22]

The use of single-site initiators for the polymerization of acrylates is attractive, since steric protection of the metal center should eliminate the unwanted side reactions described above, allowing living polymerization systems to be developed. Further, stereocontrol may be achievable by appropriate ligand selection. [Pg.24]

In the case of other Group 6 metals, the polymerization of olefins has attracted little attention. Some molybdenum(VI) and tungsten(VI) complexes containing bulky imido- and alkoxo-ligands have been mainly used for metathesis reactions and the ring-opening metathesis polymerization (ROMP) of norbornene or related olefins [266-268]. Tris(butadiene) complexes of molybdenum ) and tungsten(O) are air-stable and sublimable above 100°C [269,270]. At elevated temperature, they showed catalytic activity for the polymerization of ethylene [271]. [Pg.41]

Based on the results and discussions described so far, we concluded that the steric bulk provided by the ortho-F does not play an important role and that the attractive non-bonding interaction of the ortho-F with the 3-H of the growing polymer chain is responsible for the unprecedented living polymerization, representing the first example of an attractive interaction between the ligand and other components in a catalyst system, which dramatically enhances catalyst performance [35, 68, 74, 75]. [Pg.35]

Since their discovery over a decade ago, late transition metal a-diimine polymerization catalysts have offered new opportunities in the development of novel materials. The Ni(II) catalysts are highly active and attractive for industrial polyolefin production, while the Pd(II) catalysts exhibit unparalleled functional group tolerance and a propensity to form unusually branched polymers from simple monomers. Much of the success of these catalysts derives from the properties of the a-diimine ligands, whose steric bulk is necessary to accelerate the insertion process and inhibit chain transfer. [Pg.215]

The concept of using group I metal initiators was applied in order to minimize the toxicity generated by heavy metal residues in the end product PLAs when using metals like aluminum, tin, and lanthanides as initiators. In recent years, dinuclear lithium and macro-aggregates with phenolate ligands have attracted substantial interest, mainly due to uncommon strucmral feamres and their ability to catalyze formation of polyester and various other polymeric materials via ROP [28]. A series of lithium complexes supported with 2, 2-ethylidene-bis (4, 6-di-tert-butylphenol) (EDBP-H2) 2-6, (Scheme 6) are excellent initiators for the ROP of L-lactide in CH2CI2 at 0 °C and 25 °C [33-35]. In this case, the PDIs of the obtained PLAs were quite narrow (1.04—1.14) and a Unear relationship between and the monomer-to-initiator ratio ([M]o/[I]o) existed at 0 °C. Dimeric complexes 4 and 6 were the... [Pg.227]

Recently, rare-earth metal complexes have attracted considerable attention as initiators for the preparation of PLA via ROP of lactides, and promising results were reported in most cases [94—100]. Group 3 members (e.g. scandium, yttrium) and lanthanides such as lutetium, ytterbium, and samarium have been frequently used to develop catalysts for the ROP of lactide. The principal objectives of applying rare-earth complexes as initiators for the preparation of PLAs were to investigate (1) how the spectator ligands would affect the polymerization dynamics (i.e., reaction kinetics, polymer composition, etc.), and (2) the relative catalytic efficiency of lanthanide(II) and (III) towards ROPs. [Pg.249]

Dupont and co-workers studied the Pd-catalyzed dimerization [108] and cyclodimerization [109] of butadiene in non-chloroaluminate ionic liquids. The biphasic dimerization of butadiene is an attractive research goal since the products formed, 1,3,5-octatriene and 1,3,6-octatriene, are sensitive towards undesired polymerization, so that separation by distillation is usually not possible. These octa-trienes are of some commercial relevance as intermediates for the synthesis of fragrances, plasticizers, and adhesives. Through the use of PdCl2 with two equivalents of the ligand PPhj dissolved in [BMIM][Pp6], [BMIM][Bp4], or [BMIM][CF3S03], it was possible to obtain the octatrienes with 100 % selectivity (after 13 % conversion) (Scheme 5.2-23) [108]. The turnover frequency (TOP) was in the range of 50 mol butadiene converted per mol catalyst per hour, which represents a substantial increase in catalyst activity in comparison to the same reaction under otherwise identical conditions (70 °C, 3 h, butadiene/Pd = 1250) in THF (TOP = 6 h ). [Pg.251]

Zwitterionic complexes combining a cationic metal center and an anionic ligand have attracted increasing interest over the past few years in catalysis. Representative examples concern the polymerization of olefins, as... [Pg.55]


See other pages where Attractive Polymeric Ligands is mentioned: [Pg.1]    [Pg.10]    [Pg.1]    [Pg.10]    [Pg.24]    [Pg.840]    [Pg.6383]    [Pg.108]    [Pg.469]    [Pg.251]    [Pg.857]    [Pg.217]    [Pg.983]    [Pg.1048]    [Pg.195]    [Pg.998]    [Pg.55]    [Pg.255]    [Pg.36]    [Pg.101]    [Pg.215]    [Pg.480]    [Pg.29]    [Pg.256]    [Pg.203]    [Pg.184]    [Pg.299]    [Pg.464]    [Pg.65]    [Pg.226]    [Pg.230]    [Pg.157]    [Pg.469]    [Pg.149]    [Pg.469]    [Pg.53]    [Pg.952]    [Pg.521]    [Pg.609]   


SEARCH



Polymeric Ligands

© 2024 chempedia.info