Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric Reactions with Alkenes

As catalysts Lewis acids such as AICI3, TiCU, SbFs, BF3, ZnCh or FeCl3 are used. Protic acids such as FI2SO4 or FIF are also used, especially for reaction with alkenes or alcohols. Recent developments include the use of acidic polymer resins, e.g. Nafion-Fl, as catalysts for Friedel-Crafts alkylations and the use of asymmetric catalysts. ... [Pg.123]

Liu and Zhou applied Roush s crotylboration to the stereoselective synthesis of the orostanal 70, a novel sterol that induces apoptosis in human acute promyelotic leukemia cells28 (Scheme 3.ly). The aldehyde 72, prepared from hyodeoxycholic acid methyl ester, underwent asymmetric reaction with crotylboronate (R,R)-43E to furnish 73. Hydrogenation of the terminal alkene followed by Swem oxidation gave the ketone 74. Methylenation of the ketone and removal of the protective groups afforded orostanal in 50% yield. [Pg.121]

Asymmetric reactions Mainly alkenes with other appropriate reactants Chiral products of different kinds Rh, Ru, Ir, Cu, Ti, Mn, Co, Os, La, etc. Chapter 9... [Pg.9]

Catalytic asymmetric Diels-Alder reactions are presented by Hayashi, who takes as the starting point the synthetically useful breakthrough in 1979 by Koga et al. The various chiral Lewis acids which can catalyze the reaction of different dieno-philes are presented. Closely related to the Diels-Alder reaction is the [3-1-2] carbo-cyclic cycloaddition of palladium trimethylenemethane with alkenes, discovered by Trost and Chan. In the second chapter Chan provides some brief background information about this class of cycloaddition reaction, but concentrates primarily on recent advances. The part of the book dealing with carbo-cycloaddition reactions is... [Pg.2]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

The 1,3-dipolar cycloaddition reaction of nitrones with alkenes gives isoxazolidines is a fundamental reaction in organic chemistry and the available literature on this topic of organic chemistry is vast. In this reaction until three contiguous asymmetric centers can be formed in the isoxazolidine 17 as outlined for the reaction between a nitrone and an 1,2-disubstituted alkene. The relative stereochemistry at C-4 and C-5 is always controlled by the geometric relationship of the substituents on the alkene (Scheme 8.6). [Pg.321]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

Since their first introduction by Brunner and McKervey as chiral catalysts for the asymmetric cyclopropanation of alkenes with diazo compounds, chiral dirhodium tetra(A-arylsulfonylprolinates) complexes have been widely used by Davies,in particular, in the context of these reactions. Therefore, the use of... [Pg.214]

As discussed in Section 6.2, nitro compounds are good precursors of nitrile oxides, which are important dipoles in cycloadditions. The 1,3-dipolar cycloaddition of nitrile oxides with alkenes or alkynes provides a straightforward access to 2-isoxazolines or isoxazoles, respectively. A number of ring-cleaving procedures are applicable, such that various types of compounds may be obtained from the primary adducts (Scheme 8.18). There are many reports on synthetic applications of this reaction. The methods for generation of nitrile oxides and their reactions are discussed in Section 6.2. Recent synthetic applications and asymmetric synthesis using 1,3-dipolar cycloaddition of nitrile oxides are summarized in this section. [Pg.258]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]


See other pages where Asymmetric Reactions with Alkenes is mentioned: [Pg.487]    [Pg.487]    [Pg.213]    [Pg.174]    [Pg.175]    [Pg.177]    [Pg.179]    [Pg.655]    [Pg.262]    [Pg.41]    [Pg.613]    [Pg.324]    [Pg.994]    [Pg.210]    [Pg.210]    [Pg.222]    [Pg.306]    [Pg.344]    [Pg.357]    [Pg.491]    [Pg.256]    [Pg.553]    [Pg.174]    [Pg.175]    [Pg.190]    [Pg.269]    [Pg.119]    [Pg.250]   


SEARCH



Alkenes asymmetric

Asymmetric Reactions with Oxabicyclic Alkenes

Asymmetric reactions alkenes

Asymmetrical alkene

Reaction with alkenes

© 2024 chempedia.info