Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric 1,3-dicarbonyl derivatives

Asymmetric Phase-Transfer Reactions of 1,3-Dicarbonyl Derivatives... [Pg.450]

Some of these asymmetric phase-transfer reactions involving 1,3-dicarbonyl derivatives have been successfully used in the synthesis of highly functionaHzed... [Pg.451]

The first asymmetric intramolecular Stetter reactions were reported by Enders and co-workers utilising triazolium salt pre-catalyst 125. Treatment of substrate 123 generated 1,4-dicarbonyl compound 124 in good yield and enantioselectivity [56]. These salicylaldehyde-derived substrates 123 have since become the standard test substrates for the development of new catalysts for the asymmetric intramolecular Stetter reaction. Bach and co-workers have achieved moderate enantioselectivities using axially-chiral thiazolium pre-catalyst 126 [41], whilst Miller and co-workers have developed peptidic thiazolium pre-catalyst 127 [57]. In 2005, Rovis and coworkers showed that the NHCs derived from triazolium salts 128-130 were excellent catalysts for the asymmetric intramolecular Stetter reaction of a wide range of substrates, giving typically excellent yields and enantioselectivities [58]. The iV-pentafluorophenyl catalyst 129 currently represents the state of the art in asymmetric Stetter reactions (Scheme 12.24) [59]. [Pg.276]

The popularity of Cu(acac)2, where acac = acetylacetonato, as a precatalyst in alkene cyclopropanation using diazoesters has led to the investigation of chiral 1,3-dicarbonyls as a source of asymmetric induction in this process. Mathn et al. (26) report a selective cyclopropanation of styrene with a dimedone-derived diazocarbonyl in the presence of a camphor-derived diketone, Eq. 12. The reaction is con-... [Pg.13]

Both experimental and theoretical studies have been reported of fluoro-denitration and fluoro-dechlorination reactions using anhydrous tetrabutylammonium fluoride in DMSO. The absences of ion pairing and strong solvation are critical in contributing to the reactivity of the fluorinating agent24 Quaternary ammonium salts derived from cinchona alkaloids have been shown to be effective catalysts in an improved asymmetric substitution reaction of /1-dicarbonyl compounds with activated fluoroarenes. The products may be functionalized to yield spiro-oxindoles.25... [Pg.179]

The Lewis acid-catalyzed conjugate addition of silyl enol ethers to a,y3-unsaturated carbonyl derivatives, the Mukaiyaraa Michael reaction, is known to be a mild, versatile method for carbon-cabon bond formation. Although the development of catalytic asymmetric variants of this process provides access to optically active 1,5-dicarbonyl synthons, few such applications have yet been reported [108], Mukiyama demonstrated asymmetric catalysis with BINOL-Ti oxide prepared from (/-Pr0)2Ti=0 and BINOL and obtained a 1,4-adduct in high % ee (Sch. 43) [109]. The enantioselectiv-ity was highly dependent on the ester substituent of the silyl enol ether employed. Thus the reaction of cyclopentenone with the sterically hindered silyl enol ether derived from 5-diphenylmethyl ethanethioate proceeds highly enantioselectively. Sco-lastico also reported that reactions promoted by TADDOL-derived titanium complexes gave the syn product exclusively, although with only moderate enantioselectiv-ity (Sch. 44) [110]. [Pg.825]

The utihty of Cu(II)-box complex 96 for asymmetric Mukaiyama-Michael reaction has been intensively studied by Evans et al. (Scheme 10.91) ]248]. In the presence of HFIP fhe 96-catalyzed reaction of S-t-butyl thioacetate TMS enolate with alkylidene malonates provides fhe Michael adducts in high chemical and optical yield. HFIP plays a crucial role in inducing catalyst turnover. Slow addition of the silyl enolate to a solution of 96, alkylidene malonates, and HFIP is important in achieving high yields, because fhe enolate is susceptible to protonolysis with HFIP in fhe presence of 96. The glutarate ester products are readily decarboxylated to provide chiral 1,5-dicarbonyl synthons. Quite recenfly, Sibi et al. reported enantioselective synthesis of t -amino acid derivatives by Cu( 11)-box-catalyzed conjugate addition of silyl enolates to aminomefhylenemalonates ]249]. [Pg.472]

In 2013, the Chi group realized an NHC-catalyzed asymmetric p-functional-ization reaction of aldehydes via the transformation of saturated aldehydes to formal Michael acceptors via double oxidation. By using the catalyst derived from the chiral amino indanol triazolium salt in combination with quinone as the oxidant, the p-aryl substituted saturated aldehydes were converted to the o,p-unsaturated acyl azolium intermediates which further reacted with 1,3-dicarbonyl compounds or p-keto esters to generate the corresponding 5-lactones. It was found the use of LiCl and 4 A MS as additives was beneficial to improve the ee s of the products. Notably, the p-alkyl substituted saturated aldehydes were not viable substrates, probably due to the reduced acidity of the p-C—H bonds (Scheme 7.118). [Pg.350]

Several 9-substituted tetrahydroxanthen-l-ones result from the asymmetric Bronsted acid-catalyzed addition of the in situ generated o-qui-none methides from hydroxyarylbenzyl alcohol derivatives, and their subsequent reaction with cyclohexane-1,3-diones (Scheme 71) (14AGE13258). Other examples arise from a one-pot three-component reaction of salicylaldehydes, cyclic 1,3-dicarbonyl compounds and thiols, in the presence of ammonium chloride in aqueous medium at room temperature (14S73). A one-pot pseudo-three-component reaction of arylg-lyoxals and 2-thiobarbituric acid gives 9-aroyl tetrahydroxanthene-type compounds (14AJC283). [Pg.508]

A highly enantioselective organocatalytic Michael addition of 4-hydroxycouma-rines and related compounds to a,p-unsaturated ketones has been also achieved using imidazolidine catalyst 137 [213]. The reaction, which gives high yields and enantioselectivities for a wide range of cyclic 1,3-dicarbonyl compounds and enones, has been successfully employed for the asymmetric synthesis of the anticoagulant warfarin (Scheme 2.78) and derivatives [213], With respect to the reaction mechanism, very recent studies have demonstrated that the truly active catalyst in the process was the chiral diamine 138, which is formed in catalytic amounts under the reaction conditions by reaction with the hydroxycoumarine (Schane 2.79)... [Pg.113]


See other pages where Asymmetric 1,3-dicarbonyl derivatives is mentioned: [Pg.25]    [Pg.57]    [Pg.392]    [Pg.325]    [Pg.662]    [Pg.138]    [Pg.79]    [Pg.174]    [Pg.437]    [Pg.441]    [Pg.620]    [Pg.328]    [Pg.194]    [Pg.226]    [Pg.39]    [Pg.244]    [Pg.261]    [Pg.109]    [Pg.249]    [Pg.213]    [Pg.29]    [Pg.31]    [Pg.58]    [Pg.286]    [Pg.98]    [Pg.72]    [Pg.371]    [Pg.846]    [Pg.371]    [Pg.846]    [Pg.149]    [Pg.161]    [Pg.163]    [Pg.158]    [Pg.308]    [Pg.71]    [Pg.71]    [Pg.278]    [Pg.68]    [Pg.475]   
See also in sourсe #XX -- [ Pg.450 , Pg.453 ]




SEARCH



Asymmetric derivatives

© 2024 chempedia.info