Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric catalytic sites

Among the many types of catalytic reactions, asymmetric catalysis is of great importance in industrial production of enantiomerically pure products. During the past few decades, much research effort has been devoted to the development of chiral zeolites and some other chiral porous materials having asymmetric catalytic sites. However, the traditional preparation procedures of zeolites require the removal of surfactant templates at the high temperatures of 400-550°C. Under such harsh conditions, the chirality of the preintroduced chiral surfactants, which are used to integrate silicate-surfactant assemblies into chiral conformations, is irreversibly destroyed. Therefore, an enantiomerically pure form of zeolite is not available to date. Compared to the syntheses of zeolites, homochiral MOFs can be... [Pg.179]

Dr. Price e3q>lained that the formation of any crystalline polymer at all from racemic monomer must be due to asymmetric catalytic sites. These sites exhibit highly preferential reactivity for propylene oxide of one particular configuration. Thus, he was one of the first to recognize that defects in the catalyst or the existence of several different catalytic sites can profoundly affect the resultant polymer microstructure. [Pg.139]

The majority of NNRTIs share common conformational properties and structural features that allow them to fit into an asymmetric, hydrophobic pocket about 10 A away from the catalytic site of the HlV-1 RT, where they act as non-competitive inhibitors (Kohlstaedt et al. 1992). However, the NNRTIs select for mutant virus strains with several degrees of dmg resistance. [Pg.157]

Abstract The unique and readily tunable electronic and spatial characteristics of ferrocenes have been widely exploited in the field of asymmetric catalysis. The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst enviromnent. Instead, the Fe center can influence the catalytic process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. Of increasing importance are also half sandwich complexes in which Fe is acting as a mild Lewis acid. Like ferrocene, half sandwich complexes are often relatively robust and readily accessible. This chapter highlights recent applications of ferrocene and half sandwich complexes in which the Fe center is essential for catalytic applications. [Pg.139]

In the simpler cases, the discrimination between the two faces of the prochi-ral monomer may be dictated by the configuration of the asymmetric tertiary C atom of the last inserted monomer unit (chain-end. stereocontrol) or by the chirality of the catalytic site (chiral site stereocontrol). The distribution of steric defects along the polymer chain may be indicative of which kind... [Pg.10]

An interesting example of the above difference is l-DOPA 4, which is used in the treatment of Parkinson s disease. The active drug is the achiral compound dopamine formed from 4 via in vivo decarboxylation. As dopamine cannot cross the blood-brain barrier to reach the required site of action, the prodrug 4 is administered. Enzyme-catalyzed in vivo decarboxylation releases the drug in its active form (dopamine). The enzyme l-DOPA decarboxylase, however, discriminates the stereoisomers of DOPA specifically and only decarboxylates the L-enantiomer of 4. It is therefore essential to administer DOPA in its pure L-form. Otherwise, the accumulation of d-DOPA, which cannot be metabolized by enzymes in the human body, may be dangerous. Currently l-DOPA is prepared on an industrial scale via asymmetric catalytic hydrogenation. [Pg.6]

The formation of an isotactic polymer requires that insertion always occur at the same prochiral face of the propylene molecule. Theoretically, both a chiral catalytic site (enantiomorphic site control) and the newly formed asymmetric center of the last monomeric unit in the growing polymer chain (chain end control) may... [Pg.759]

As an example of an asymmetric membrane integrated protein, the ATP synthetase complex (ATPase from Rhodospirillum Rubrum) was incorporated in liposomes of the polymerizable sulfolipid (22)24). The protein consists of a hydrophobic membrane integrated part (F0) and a water soluble moiety (Ft) carrying the catalytic site of the enzyme. The isolated ATP synthetase complex is almost completely inactive. Activity is substantially increased in the presence of a variety of amphiphiles, such as natural phospholipids and detergents. The presence of a bilayer structure is not a necessary condition for enhanced activity. Using soybean lecithin or diacetylenic sulfolipid (22) the maximal enzymatic activity is obtained at 500 lipid molecules/enzyme molecule. With soybean lecithin, the ATPase activity is increased 8-fold compared to a 5-fold increase in the presence of (22). There is a remarkable difference in ATPase activity depending on the liposome preparation technique (Fig. 41). If ATPase is incorporated in-... [Pg.39]

From rate and product studies with xylooligosaccharides it was concluded that a xylanase from Ceratocystis paradoxa requires a chain of at least five xylose residues for rapid binding and subsequent hydrolysis (18). The catalytic site is assumed to be situated asymmetrically within a row of the five binding subsites. Similar studies on a cellulase from Aspergillus niger also suggest the presence of five binding subsites (14). [Pg.359]

The nucleotide occupancy of the catalytic sites observed in the first crystal structure was exactly what Paul Boyer had predicted earlier in his binding-change model of cooperative catalysis (Boyer, 1993). Consequently, this first high-resolution structure of the Fj-ATPase immediately initiated a number of studies that ultimately led to the elucidation of the F -. TPase s rotational mechanism of cooperative catalysis. At the time, the F - ATPase structure represented the largest asymmetric structure solved to atomic resolution by x-ray crystallography, and this accomplishment, together with the visionary prediction of rotary catalysis, was subsequently awarded the 1997 Nobel prize in chemistry (to John Walker for the structure and Paul Boyer for the catalytic mechanism). However, whether the first (and many subsequent) structure (s) represented physiologically... [Pg.354]

An isotactic stereospecific polymerization arises essentially from the favored complexation of one prochiral face of the a-olefin, followed by a stereospecific process. The stereospecific insertion process and the stereospecific polymerization of racemic a-olefins giving isotactic polymers may be expected to be stereoselective whenever the asymmetric carbon atom is in an a- or /3-position relative to the double bond, and when the interaction between the chirality center of the olefin and the chiral catalytic site is negligible. [Pg.112]

The first example of asymmetric rhodium-catalyzed hydrogenation of prochi-ral olefins in dendrimer catalysis was reported by Togni et al., who immobilized the chiral ferrocenyl diphosphine Josiphos at the end groups of dendrimers, thus obtaining systems of up to 24 chiral metal centres in the periphery (Fig. 2) [12-14]. The fact that the catalytic properties of the dendrimer catalysts were almost identical to those of the mononuclear catalysts was interpreted as a manifestation of the independence of the individual catalytic sites in the macromolecular systems. [Pg.64]

Concentration of the organic reactants on surfaces or in the pores of clay materials prior to reaction has been suggested by Bernal [219] and Cairns-Smith [220]. Pores of different sizes might have operated as prebiotic reactors for asymmetric synthesis, since within their confined environment one may find chiral catalytic sites as well as chiral surfaces. One could envisage that such pores might have provided a plausible environment for the formation of diastereoisomeric self-assemblies of the types described in this review and as required for the stochastic mirror symmetry breaking scenarios. In addition, within such pores the chiral material once formed would be protected from racemization that could have been induced by impact with heavy bodies or by intense cosmic radiation. [Pg.158]

Desirable catalyst characteristics in this field include catalytic sites with asymmetric transition-metal centers, which are conducive to stereospecific synthesis. An alternative, intermediate solution is the encapsulation of the thermally unstable enzyme like catalysts onto stable supports. [Pg.808]

The great diversity of concepts and synkinetic structures which have been realized within the last decade and which is partly represented in this volume, suggests that all kinds of membranes are accessible asymmetric, as thin as 2.0 nm, helical, porous, fluid or solid, chiral on the surface or in the centre, photoreactive etc. etc. This diversity will inevitably grow. A few obvious unsolved problems which need immediate attention can also be detailed e.g. synkinesis of solid micelles and vesicles from concave molecules with at least four hydrogen bonding sites, co-crystallization of porphyrins with solid membrane structures, and evaluation of nanopores as catalytic sites. Many more such target assemblies will undoubtedly be envisioned and successfully syn-kinetized. [Pg.213]

It is well accepted that two mechanisms of stereocontrol (the chiral induction responsible for selecting the monomer enantioface) are operative in stereoselective a-olefm polymerizations. In the simpler cases, the discrimination between the two faces of the prochiral monomer may be dictated either by the configuration of the asymmetric tertiary C atom of the last inserted monomer unit or by the chirality of the catalytic site. These two different mechanisms of stereocontrol are named chain-end stereocontrol and enantiomorphic-site or site stereocontrol. In the case of chain-end stereocontrol, the selection between the two enantiofaces of the incoming monomer is operated by the chiral environment provided by the last inserted tertiary C atom of the growing chain, whereas in the case of site stereocontrol this selection is operated by the chirality of the catalytic site. The origin of stereocontrol in olefin polymerization has been reviewed extensively.162,172-178... [Pg.1018]


See other pages where Asymmetric catalytic sites is mentioned: [Pg.761]    [Pg.11]    [Pg.331]    [Pg.141]    [Pg.100]    [Pg.276]    [Pg.761]    [Pg.11]    [Pg.331]    [Pg.141]    [Pg.100]    [Pg.276]    [Pg.233]    [Pg.145]    [Pg.461]    [Pg.461]    [Pg.900]    [Pg.1435]    [Pg.81]    [Pg.220]    [Pg.383]    [Pg.21]    [Pg.709]    [Pg.182]    [Pg.644]    [Pg.131]    [Pg.151]    [Pg.446]    [Pg.81]    [Pg.365]    [Pg.100]    [Pg.140]    [Pg.635]    [Pg.106]    [Pg.180]    [Pg.900]    [Pg.189]   
See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Asymmetric catalytic

Catalytic site

© 2024 chempedia.info