Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assimilatory iron reduction

The bis-hydroxylamine adduct [Fe (tpp)(NH20H)2] is stable at low temperatures, but decomposes to [Fe(tpp)(NO)] at room temperature. [Fe(porphyrin)(NO)] complexes can undergo one-and two-electron reduction the nature of the one-electron reduction product has been established by visible and resonance Raman spectroscopy. Reduction of [Fe(porphyrin)(NO)] complexes in the presence of phenols provides model systems for nitrite reductase conversion of coordinated nitrosyl to ammonia (assimilatory nitrite reduction), while further relevant information is available from the chemistry of [Fe (porphyrin)(N03)]. Iron porphyrin complexes with up to eight nitro substituents have been prepared and shown to catalyze oxidation of hydrocarbons by hydrogen peroxide and the hydroxylation of alkoxybenzenes. ... [Pg.468]

With M. gryphiswaldense, Schuler and Bauerlein (1996) recorded an Fe uptake rate from Fe " citrate of 0.86 nmol min mg dry weight and suggested that the major portion of Fe is taken up in an energy-dependent process possibly by a reductive step (Schuler, 1999). Fukumori et al. (1997) proposed that the dissimilatory nitrite reductase of M. magnetotacticum may function as an Fe" oxidizing enzyme. Later, Fuko-mori (2000) suggested an Fe "quinate complex as the source of Fe which is subsequently reduced in the cell in a microaerobic environment at about neutral pH by the iron reductase NADH (an assimilatory enzyme). [Pg.485]

Nitrite reduction in assimilatory nitrate-reducing Neurospora crassa, Torulopsis nitratophila, Azotobacter vinelandii, and Azotobacter chro-ococcum appears to be catalyzed by enzyme systems which require flavin and metals. The enzyme from N. crassa has been partially purified, and its molecular weight has been estimated to be 300,000 (344, 346, 351, 367). The enzyme reduces both nitrite and hydroxylamine to ammonia and utilizes NADH or NADPH as electron donor. It is reported to be a FAD-dependent enzyme and to contain iron, copper, and active thiol (346, 367). Three moles of NADH are oxidized per mole of nitrite reduced to ammonia. It has been suggested that the reduction of nitrite occurs in three steps, each involving two electrons. Thus, hyponitrite and hydroxylamine have been proposed as successive intermediates in the re-... [Pg.275]

In all photoautotrophs, reduction of NOj" to NH4 is achieved in two distinct enzymatic steps (Campbell, 2001). First, assimilatory nitrate reductase (NR) catalyzes the two electron reduction from NOj" to NO2. NR is a large soluble cytoplasmic enzyme with FAD (flavin adinine dinucleotide), an iron-containing cytochrome and molybdopterin prosthetic groups, and requires NADH and/or NADPH as an electron donor (Guerrero et al, 1981). Functional NR is in the form of a homodimer and therefore requires two atoms of iron per enzyme. Following transport into the chloroplast, NO2 undergoes a 6 e reduction to NH4 via assimilatory nitrite reductase (NiR). NiR, a soluble chloroplastic enzyme, contains five iron atoms per active enzyme molecule, and requires photosynthetically reduced ferredoxin as an electron donor (Guerrero et al., 1981). [Pg.2979]


See other pages where Assimilatory iron reduction is mentioned: [Pg.262]    [Pg.446]    [Pg.412]    [Pg.150]    [Pg.247]    [Pg.248]    [Pg.131]    [Pg.1406]    [Pg.3733]    [Pg.618]    [Pg.80]    [Pg.15]    [Pg.47]    [Pg.149]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Assimilatory

Assimilatory reduction

Iron reduction

Reductants iron

© 2024 chempedia.info