Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl dialkylzinc

When the p-substituent in the cyclic enone is an ester group, the enantioselective formation of the quaternary stereogenic centre is very effective using ligand L9 (Scheme 65) [99]. The scope of this reaction includes both alkyl (including methyl) and aryl dialkylzinc reagents as nucleophiles and methyl and more sterically... [Pg.83]

Since amines, unlike alcohols, do not react with dialkylzincs but may coordinatively bind to the zinc atom, the dilithio salt of 2,5-diisopropylpiperazine is a more potent catalyst than the piperazine itself, presumably due to the greater nucleophilic power of the dianion10. Dimethylzinc reacts rather slowly with aryl aldehydes and although the product is obtained in high enantiomeric excess, the chemical yield is low10. [Pg.166]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

Kitamura and Noyori have reported mechanistic studies on the highly diastere-omeric dialkylzinc addition to aryl aldehydes in the presence of (-)-i-exo-(dimethylamino)isoborneol (DAIB) [33]. They stated that DAIB (a chiral (i-amino alcohol) formed a dimeric complex 57 with dialkylzinc. The dimeric complex is not reactive toward aldehydes but a monomeric complex 58, which exists through equilibrium with the dimer 57, reacts with aldehydes via bimetallic complex 59. The initially formed adduct 60 is transformed into tetramer 61 by reaction with either dialkylzinc or aldehydes and regenerates active intermediates. The high enantiomeric excess is attributed to the facial selectivity achieved by clear steric differentiation of complex 59, as shown in Scheme 1.22. [Pg.30]

Seebach and coworkers have developed enantioselective conjugate additions of primary dialkylzinc reagents to 2-aryl- and 2-heteroaryl-nitroalkenes mediated by titanium-TADDO-Lates (Eq. 4.90). x a TADDOLs and their derivatives are excellent chiral auxiliaries.9611... [Pg.99]

The direct reaction of zinc metal with organic iodides dates back to the work of Frankland(67). Several modifications have been suggested since that time to increase the reactivity of the metal. The majority of these modifications have employed zinc-copper couples(68-72), sodium-zinc alloys(73), or zinc-silver couples(77). Some recent work has indicated that certain zinc-copper couples will react with alkyl bromides to give modest yields of dialkylzinc compounds(74,73). However, all attempts to react zinc with aryl iodides or bromides have met with failure. The primary use of zinc couples has been in the Simmons-Smith reaction. This reaction has been primarily used with diiodomethane as 1,1-dibromides or longer chain diiodides have proven to be too unneactive even with the most reactive zinc couples. [Pg.235]

Recent notable improvements by Knochel and co-workers include iron-catalyzed cross-coupling reactions of various acid chlorides 148 with dialkylzinc reagents (Equation (24))324 as well as the iron-catalyzed arylation of aroyl cyanides 149 with Grignard reagents (Equation (25)).3 5 In the first case Knochel s reaction conditions tolerate ester groups on the organozinc compounds, while in the latter case ester, aryl alkyl ether, cyano, and chloro functionalities on the aromatic moieties are compatibles with the reaction conditions. [Pg.439]

Correspondingly, the catalytic 1,4-addition of dialkylzinc reagents to 3-nitro-coumarin 89 (Scheme 7.24), with a fixed trans orientation of the aryl and nitro groups, proceeds with excellent yields (90-99%), high diastereoselectivity (d.r. up to 20 1), and enantioselectivities of up to 92%. Hydrolysis of the lactone moiety in 90 was accompanied by decarboxylation, providing an asymmetric synthesis of 8-aryl-nitroalkane 91. [Pg.251]

Enantioselective conjugate addition [40] has become truly useful with the aid of dialkylzinc, cationic copper catalyst, and a chiral ligand (Eq. 1, see also Chapt. 7) [41]. Magnesium-based reagents have found use in quantitative fivefold arylation of Cgo (Eq. 10.2) [42] and threefold arylation of C70 [43], paving ways to new classes of cyclopentadienyl and indenyl ligands with unusual chemical properties. [Pg.317]

However, very few catalyst systems reported to date are highly effective for both p- aryl and p-alkyl acyclic enone substrates in the copper-catalyzed asymmetric 1,4-addition. Ligand 27, developed by Hoveyda, shows high enantioselectivity in the 1,4-addition of dialkylzinc reagents to various acyclic enones (Figure 3.6). " ... [Pg.64]

The reaction of an aryl and an alkyl iodide in presence of complex (103) and the Zn-Cu couple leads to alkyl aryl ketones in good yields (equation 115).492 By-products such as ArR, ArH and Ar2 were found in some cases. Replacement of alkyl iodides by benzyl chlorides gave benzyl ketones, but the formation of by-products due to coupling reactions was significant. Dialkylzinc complexes were formed here and the proposed mechanism is given in Scheme 41. [Pg.283]

Addition of organometallic reagents to imines is not limited to allylmetal derivatives. Hoveyda and Snapper have demonstrated that dialkylzinc reagents can add to imines in a one-pot procedure. Using a zirconium complex as metal catalyst and a chiral peptide, diverse enantioenriched aryl, aliphatic and alkynyl amines 142 have been obtained with high levels of enantioselectivity (Scheme 8.60) [136],... [Pg.260]

Aromatic ketones arylations, 10, 140 asymmetric hydrogenation, 10, 50 G—H bond alkylation, 10, 214 dialkylzinc additions, 9, 114-115 Aromatic ligands mercuration, 2, 430 in mercury 7t-complexes, 2, 449 /13-77-Aromatic nitriles, preparation, 6, 265 Aromatic nucleophilic substitution reactions, arene chromium tricarbonyls, 5, 234... [Pg.57]

Addition of dialkylzinc reagents to /3-aryl- and /3-alkyl-nitroalkcncs, RCH=CHN02, catalysed by a complex of (TfO)2Cu with the proline-derived amidophosphine (193), afforded the corresponding nitroalkanes with moderate to good enantioselectivities (54-80% ee). The performance was highly dependent on the reaction procedure thus,... [Pg.334]

In addition to amino alcohols, numerous other ligands such as amines, amino thiols, diols, disulfides, and dis-elenides have been developed and tested. Several have shown a very good enantioselectivity for dialkylzinc additions to a variety of aldehydes. In contrast, the addition of aryl-, vinyl-, and alkynylzinc compounds was not so extensively studied and more work is stiU needed in... [Pg.5237]


See other pages where Aryl dialkylzinc is mentioned: [Pg.255]    [Pg.164]    [Pg.250]    [Pg.199]    [Pg.255]    [Pg.255]    [Pg.286]    [Pg.29]    [Pg.100]    [Pg.774]    [Pg.59]    [Pg.195]    [Pg.346]    [Pg.372]    [Pg.566]    [Pg.801]    [Pg.95]    [Pg.199]    [Pg.98]    [Pg.113]    [Pg.5235]    [Pg.456]    [Pg.55]    [Pg.605]    [Pg.1101]    [Pg.1310]    [Pg.1311]    [Pg.1332]    [Pg.1333]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Dialkylzinc

Dialkylzincs

© 2024 chempedia.info