Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl complexes reduction

Reduction of 3,5,5-tris-aryl-2(5// )-furanones 115 (R, R, R = aryl) with dimethyl sulfide-borane led to the formation of the 2,5-dihydrofurans 116 in high yields. However, in the case of 3,4-diaryl-2(5//)-furanones 115 (R, R = aryl R = H or r = H R, R = aryl), the reduction led to a complicated mixture of products of which only the diarylfurans 117 could be characterized (Scheme 36) (88S68). It was concluded that the smooth conversion of the tris-aryl-2(5//)-furanones to the corresponding furan derivatives with the dimethylsulfide-borane complex in high yields could be due to the presence of bulky aryl substituents which prevent addition reaction across the double bond (88S68). [Pg.129]

Iron(II) alkyl anions fFe(Por)R (R = Me, t-Bu) do not insert CO directly, but do upon one-electron oxidation to Fe(Por)R to give the acyl species Fe(Por)C(0)R, which can in turn be reduced to the iron(II) acyl Fe(Por)C(0)R]. This process competes with homolysis of Fe(Por)R, and the resulting iron(II) porphyrin is stabilized by formation of the carbonyl complex Fe(Por)(CO). Benzyl and phenyl iron(III) complexes do not insert CO, with the former undergoing decomposition and the latter forming a six-coordinate adduct, [Fe(Por)(Ph)(CO) upon reduction to iron(ll). The failure of Fe(Por)Ph to insert CO was attributed to the stronger Fe—C bond in the aryl complexes. The electrochemistry of the iron(lll) acyl complexes Fe(Por)C(0)R was investigated as part of this study, and showed two reversible reductions (to Fe(ll) and Fe(l) acyl complexes, formally) and one irreversible oxidation process."" ... [Pg.258]

The formation of these compounds has been rationalized according to Scheme 6. The reaction of Os (E )-CH=C 11 Ph C1 (C())( P Pr3)2 with n-BuLi involves replacement of the chloride anion by a butyl group to afford the intermediate Os (/i> CH=CHPh ( -Bu)(CO)(P Pr3)2, which by subsequent hydrogen (3 elimination gives OsH ( >CI I=CHPh (CO)( P Pr3)2. The intramolecular reductive elimination of styrene from this compound followed by the C—H activation of the o-aryl proton leads to the hydride-aryl species via the styrene-osmium(O) intermediate Os r 2-CH2=CHPh (CO)(P Pr3)2. In spite of the fact that the hydride-aryl complex is the only species detected in solution, the formation of OsH ( )-CH=CHPh L(CO)(P Pr3)2 and 0s ( )-CH=CHPh (K2-02CH)(C0)(P,Pr3)2 suggests that in solution the hydride-aryl complex is in equilibrium with undetectable concentrations of OsH ( )-CH=CHPh (CO)(P,Pr3)2. This implies that the olehn-osmium(O) intermediate is easily accessible and can give rise to activation reactions at both the olefinic and the ortho phenyl C—H bonds of the... [Pg.9]

The cis/trans isomerization of platinum(II) complexes is a subject which will be discussed in some detail when the halide (Group VII) complexes are covered. Nevertheless the importance of reductive elimination reactions of platinum(II) alkyl and aryl complexes makes it imperative that this reaction be discussed here for alkyl and aryl platinum(II) compounds. [Pg.399]

Oxidative addition of the Si-aryl carbon bond in the silacyclobutene ring to Pt gives the optically active intermediate Pt-complex. Further coordination of (+)-l-methyl-l-(l-naphthyl)-2,3-benzosilacyclobut-2-ene to the complex and cr-bond metathesis will provide the cyclic dimer Pt-complex. Reductive elimination from the intermediate platinum complex gives cyclic polymers and oligomers. Preference of cr-bond metathesis over reductive elimination gives polymers of higher molecular weight. The presence of EtsSiH in the system results in the formation of linear products via cr-bond metathesis. [Pg.530]

The mechanisms of the reductive eliminations in Scheme 5 were studied [49,83], and potential pathways for these reactions are shown in Scheme 6. The reductive eliminations from the monomeric diarylamido aryl complex 20 illustrate two important points in the elimination reactions. First, these reactions were first order, demonstrating that the actual C-N bond formation occurred from a monomeric complex. Second, the observed rate constant for the elimination reaction contained two terms (Eq. (49)). One of these terms was inverse first order in PPh3 concentration, and the other was zero order in PPh3. These results were consistent with two competing mechanisms, Path B and Path C in Scheme 6, occurring simultaneously. One of these mechanisms involves initial, reversible phosphine dissociation followed by C-N bond formation in the resulting 14-electron, three-coordinate intermediate. The second mechanism involves reductive elimination from a 16-electron four-coordinate intermediate, presumably after trans-to-cis isomerization. [Pg.248]

Iron porphyrin complexes with axial (7-alkyl and (7-aryl groups have been prepared and fully characterized by several groups (17,18). Addition of a chemical oxidant to (19, 20), or electrochemical oxidation of (21), the low-spin iron(III)-alkyl (-aryl) porphyrins results in transient formation of an iron(IV) (7-alkyl (a-aryl) complex that undergoes reductive elimination to give the iron(II) N-substituted product as shown in Scheme 2. The iron(IV) intermediate has been directly observed by low temperature lH NMR spectroscopy (22) and spectroelectrochemistry (21). [Pg.380]

Closely related are the -acyl complexes of iron (115). These have been prepared by three methods. Loss of N2 from (112) in the presence of an alkyl halide gives oxidative addition see Oxidative Addition) to yield ) -acyl complexes for some phosphine ligands. Sodium amalgam reduction of Fe halide complexes (116), and exposme of the resulting (117) to an alkyl halide, gives similar complexes (equation 24). Finally, placement of iron alkyl (aryl) complexes (118) under a CO atmosphere results in insertion to afford complexes (119) (equation 25). ... [Pg.2039]

One-electron oxidation of phenyl iron(III) tetraarylpor-phyrin complexes with bromine in chloroform at —60°C produces deep red solutions whose H and H NMR spectra indicate that they are the corresponding iron(IV) complexes. For the low-spin aryl Fe porphyrins the electron configuration is (dxyf(dxz,dyzf, with one tt-symmetry unpaired electron, and for the low-spin aryl Fe porphyrins the electron configuration is d, yf- d, zAyzf with two TT-symmetry unpaired electrons. The aryl Fe porphyrins are thermally unstable, and upon warming convert cleanly to A-phenylporphyrin complexes of Fe by reductive elimination. This process has been investigated by electrochemical techniques, by which it was shown that the reversible (at fast scan rates) one-electron oxidation of a-aryl complexes of PFe was followed by an irreversible chemical reaction that yielded the Fe complex of the A-phenylporphyrin, which could then be oxidized reversibly by one electron to yield the Fe complex of the A-phenylporphyrin. (If the Fe complex of the N-phenylporphyrin is instead reduced by one electron, the Fe complex of the A-phenylporphyrin is formed reversibly at... [Pg.2185]

The evidence is in accord with an addition-elimination mechanism (addition of ArPdX followed by elimination of HPdX) in most cases." In the conventionally accepted reaction mechanism," a four-coordinate aryl-Pd(II) intermediate is formed by oxidative addition of the aryl halide to a Pd(0) complex prior to olefin addition. This suggests that cleavage of the dimeric precursor complex, reduction of Pd , and ligand dissociation combine to give a viable catalytic species." If these processes occur on a time scale comparable to that of the catalytic reaction, nonsteady-state catalysis could occur while the active catalyst is forming, and an... [Pg.894]

Homoleptic alkyl and aryl complexes of vanadium(IV) can in principle be synthesized from VCI4. However their thermal instability of makes them difficult to isolate. In some cases, the use of lithium alkyls and alkyl Grignards leads to reduction from V(IV) to V(III). Interestingly, [V(l-norbornyl)4], prepared from VCI4 and Li(l-norbornyl), is relatively stable up to 100 °C and is only moderately air sensitive [30]. The most air/ thermally stable complex of this class is [V(Mes)4], which was isolated in nearly quantitative yield by air oxidation of Li[V(Mes)4] [31]. [Pg.103]


See other pages where Aryl complexes reduction is mentioned: [Pg.12]    [Pg.1028]    [Pg.488]    [Pg.489]    [Pg.249]    [Pg.1028]    [Pg.392]    [Pg.305]    [Pg.615]    [Pg.242]    [Pg.394]    [Pg.318]    [Pg.102]    [Pg.145]    [Pg.117]    [Pg.125]    [Pg.247]    [Pg.249]    [Pg.255]    [Pg.257]    [Pg.153]    [Pg.154]    [Pg.154]    [Pg.158]    [Pg.159]    [Pg.23]    [Pg.1271]    [Pg.3362]    [Pg.4920]    [Pg.271]    [Pg.145]    [Pg.271]    [Pg.460]    [Pg.22]    [Pg.126]    [Pg.10]   


SEARCH



Aryl complexes

Aryl reduction

Arylated Complexes

Arylation complex

Complexes reduction

Complexity reduction

Reductive Eliminations to Form -X Bonds from Aryl and Alkylplatinum(IV) Complexes

© 2024 chempedia.info