Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arsenic silver complexes

Other arsenic-containing ligands reported include mixed donor species with S212 or N213,214 as the other donor atom. The ligand bis(carboxymethyl)(o-methylthiophenyl)arsine (24) contains S and As donors in a position suitable for chelation. Formation constants for its complexes with Ag1 are given in Table 30. The silver complexes of the m and p derivatives were insoluble under the conditions used and no data could be collected.212... [Pg.804]

Perhaps the most attractive feature of filter paper chromatography is the ability to make fast, quantitative separations of simple or complex mixtures. The use of circular paper with central solvent feed Increases separation speed due to the two-dimensional flow of the solvent. In addition the solvent flow rate can be adjusted over moderate limits by charging the width and length of the tab or wick which delivers the solvent to the center of the paper (L15). By using circular paper Martin (M15) has separated lead from copper, arsenic, silver, cadmium, antimony, mercury and bismuth In... [Pg.89]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

Metals less noble than copper, such as iron, nickel, and lead, dissolve from the anode. The lead precipitates as lead sulfate in the slimes. Other impurities such as arsenic, antimony, and bismuth remain partiy as insoluble compounds in the slimes and partiy as soluble complexes in the electrolyte. Precious metals, such as gold and silver, remain as metals in the anode slimes. The bulk of the slimes consist of particles of copper falling from the anode, and insoluble sulfides, selenides, or teUurides. These slimes are processed further for the recovery of the various constituents. Metals less noble than copper do not deposit but accumulate in solution. This requires periodic purification of the electrolyte to remove nickel sulfate, arsenic, and other impurities. [Pg.176]

Silver compounds having anions that are inherently toxic, eg, silver arsenate and silver cyanide, can cause adverse health effects. The reported rat oral LD values for silver nitrate, silver arsenate [13510-44-6] and silver cyanide are 500—800 (29), 200—400 (29), and 123 mg/kg (30), respectively. Silver compounds or complexes ia which the silver ion is not biologically available, eg, silver sulfide and silver thiosulfate complexes, are considered to be without adverse health effects and essentially nontoxic. [Pg.91]

Arsenic. Total arsenic concentration can be determined by reduction of all forms to arsine (AsH ) and collection of the arsine in a pyridine solution of silver diethyldithiocarbamate. Organoarsenides must be digested in acidic potassium persulfate prior to reduction. The complex that forms is deep red, and this color can be measured spectrophotometricaHy. Reduction is carried out in an acidic solution of KI—SnCl2, and AsH is generated by addition of 2inc. [Pg.232]

Although trialkyl- and triarylbismuthines are much weaker donors than the corresponding phosphoms, arsenic, and antimony compounds, they have nevertheless been employed to a considerable extent as ligands in transition metal complexes. The metals coordinated to the bismuth in these complexes include chromium (72—77), cobalt (78,79), iridium (80), iron (77,81,82), manganese (83,84), molybdenum (72,75—77,85—89), nickel (75,79,90,91), niobium (92), rhodium (93,94), silver (95—97), tungsten (72,75—77,87,89), uranium (98), and vanadium (99). The coordination compounds formed from tertiary bismuthines are less stable than those formed from tertiary phosphines, arsines, or stibines. [Pg.131]

The solution should be free from the following, which either interfere or lead to an unsatisfactory deposit silver, mercury, bismuth, selenium, tellurium, arsenic, antimony, tin, molybdenum, gold and the platinum metals, thiocyanate, chloride, oxidising agents such as oxides of nitrogen, or excessive amounts of iron(III), nitrate or nitric acid. Chloride ion is avoided because Cu( I) is stabilised as a chloro-complex and remains in solution to be re-oxidised at the anode unless hydrazinium chloride is added as depolariser. [Pg.515]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Sulphuric acid is not recommended, because sulphate ions have a certain tendency to form complexes with iron(III) ions. Silver, copper, nickel, cobalt, titanium, uranium, molybdenum, mercury (>lgL-1), zinc, cadmium, and bismuth interfere. Mercury(I) and tin(II) salts, if present, should be converted into the mercury(II) and tin(IV) salts, otherwise the colour is destroyed. Phosphates, arsenates, fluorides, oxalates, and tartrates interfere, since they form fairly stable complexes with iron(III) ions the influence of phosphates and arsenates is reduced by the presence of a comparatively high concentration of acid. [Pg.690]

Selenium is extracted as diethyldithiocarbamate complex from the solution containing citrate and EDTA [5]. Ohta and Suzuki [6] found that only a few elements, such as copper, bismuth, arsenic, antimony, and tellurium, are also extracted together with selenium. They examined this for effects of hundredfold amounts of elements co-extracted with the selenium diethyldithiocarbamate complex. An appreciable improvement of interferences from diverse elements was observed in the presence of copper. Silver depressed the selenium absorption in the case of atomisation of diethyldithiocarbamate complex, but the interference of silver was suppressed in the presence of copper. The atomisation profile from diethyldithiocarbamate complex was identical with that from selenide. [Pg.119]

Solubility data (pA sp) for two dozen hexacyanoferrate(II) and hexacyanoferrate(III) salts, and Pourbaix (pe/pH) diagrams for iron-cyanide-water, iron-sulfide-cyanide-(hydr)oxide, iron-arsenate-cyanide-(hydr)oxide, and iron-copper-cyanide-sulfide-(hydr)oxide, are given in a review ostensibly dedicated to hydrometallurgical extraction of gold and silver. " The electrochemistry of Prussian Blue and related complexes, in the form of thin films on electrodes, has been reviewed. ... [Pg.422]

Insoluble starch xanthate (ISX) releases magnesium and takes up heavy metals. There are also a number of proprietary chemicals developed by various companies (e.g. Environmental Technology of Sanford, Florida) for removal of complexed copper, silver (from photographic process wastes), arsenic, nickel, lead, mercury, zinc, cadmium, barium, and other heavy metals. [Pg.68]

The Kf value for the Ag(CN) 2 complex ion is5.6xl018. Cyanide ions (CN ) would be better removers of silver ions than thiosulfate ions. However, most of us know that cyanide is a deadly poison if inhaled or ingested. In the play Arsenic and Old Lace, it was used very effectively to rid the cast of unwanted characters. Refining the process of film developing, which included not only the discovery of proper fixing solutions but also the development of film surfaces and developers that were reliable, helped to plunge us into the age of modern photography. [Pg.313]

As VIS Arsenic in the sample is converted to arsine, which is evolved and then complexed with silver diethyldithiocar-bamate. The intensity of the color of the complex is measured at 510-525 nm. Applicable to 0.001-0.1 mg L-1 in surface and waste waters. Interference from Sb may be important. Ag, Cr, Co, Mo, Ni, Hg, and Pt at concentrations <5 mg L-1 do not interfere. 93... [Pg.291]


See other pages where Arsenic silver complexes is mentioned: [Pg.348]    [Pg.348]    [Pg.165]    [Pg.139]    [Pg.395]    [Pg.774]    [Pg.681]    [Pg.222]    [Pg.915]    [Pg.947]    [Pg.954]    [Pg.872]    [Pg.1479]    [Pg.304]    [Pg.144]    [Pg.63]    [Pg.1479]    [Pg.262]    [Pg.841]    [Pg.157]    [Pg.278]    [Pg.803]    [Pg.818]    [Pg.246]    [Pg.337]    [Pg.480]    [Pg.483]    [Pg.612]    [Pg.617]    [Pg.1024]   
See also in sourсe #XX -- [ Pg.4 , Pg.127 ]

See also in sourсe #XX -- [ Pg.4 , Pg.127 ]




SEARCH



Arsenate complexes

Arsenic complexes

Silver complexes

Silver complexes arsenic ligands

Silver complexes arsenic-donors

© 2024 chempedia.info