Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic systems benzene

Electrophilic and nucleophilic substitution in aromatic systems benzenes can now be converted to the corresponding salts, e.g. [Pg.164]

Aromatic hydroxylation. Aromatic hydroxylation such as that depicted in Figure 4.3 for the simplest aromatic system, benzene, is an extremely important bio transformation. The major products of aromatic hydroxylation are phenols, but catechols and quinols may also be formed, arising by further metabolism. One of the toxic effects of benzene is to cause aplastic... [Pg.83]

In cyclic sulfoximides such as 3-ethoxy-4,5-dihydro-3-oxo-l-phenyl-and 3,4,5,6-tetrahydro-3,5-dioxo-1 -phenyl-1H-1 A6,2,4-thiadiazine 1 -oxides (46), the C6 proton signals appear at much higher fields [4.35 and 4.9 ppm (2H)] than for aromatic systems [benzene, 7.27 ppm thiophene, 7.2 (C2-H) and 6.95 ppm (C3-H)]. Similarly, the, 3C-NMR signals of the C6 atom appear at higher fields. These facts suggest a degree of ylidic character (77JOC952), which can be demonstrated by the reactivity of such compounds towards electrophiles (see Section III, C,3,f). [Pg.285]

The spin-coupled method has now been applied to a large number of aromatic systems benzene and naphthalene azobenzenes, such as pyridine, pyridazine, pyrimidine and pyrazine five-membered rings, such as furan, pyrrole, thiophen, and thiazole and inorganic heterocycles, such as borazine ( inorganic benzene ) and boroxine, for which we find little evidence of aromaticity. Structural formulae are collected in Fig. 1. For all of these molecules we have included the effects of electron correlation for the Jt electrons but not for the a framework. This a-n separation is an approximation whose utility rests upon the chemistry of aromatic systems — to abandon it would be to ignore this entire body of experience. Furthermore, very extensive calculations [4] have demonstrated that rc-electron only correlation affords an excellent description of ground and excited states of benzene. [Pg.43]

Kalechits et al. (213) applied the sextet model to explain the different rates of hydrogenation over nickel and platinum of the polycyclic aromatic systems benzene, biphenyl, naphthalene, anthracene, phenan-threne, 1,2-benzanthracene, and pyrene. [Pg.46]

The results of the derivation (which is reproduced in Appendix A) are summarized in Figure 7. This figure applies to both reactive and resonance stabilized (such as benzene) systems. The compounds A and B are the reactant and product in a pericyclic reaction, or the two equivalent Kekule structures in an aromatic system. The parameter t, is the reaction coordinate in a pericyclic reaction or the coordinate interchanging two Kekule structures in aromatic (and antiaromatic) systems. The avoided crossing model [26-28] predicts that the two eigenfunctions of the two-state system may be fomred by in-phase and out-of-phase combinations of the noninteracting basic states A) and B). State A) differs from B) by the spin-pairing scheme. [Pg.342]

The main chain of these polymers contains, as the principal component, five- or six-membered heteroaromatic rings, ie, imides, which are usually present as condensed aromatic systems, such as with benzene (phthalimides, 3) and naphthalene (naphthalimides, 4) rings. [Pg.396]

The meaning of the word aromaticity has evolved as understanding of the special properties of benzene and other aromatic molecules has deepened. Originally, aromaticity was associated with a special chemical reactivity. The aromatic hydrocarbons were considered to be those unsaturated systems that underwent substitution reactions in preference to addition. Later, the idea of special stability became more important. Benzene can be shown to be much lower in enthalpy than predicted by summation of the normal bond energies for the C=C, C—C, and C—H bonds in the Kekule representation of benzene. Aromaticity is now generally associated with this property of special stability of certain completely conjugated cyclic molecules. A major contribution to the stability of aromatic systems results from the delocalization of electrons in these molecules. [Pg.509]

Partial fluorination [50] and perfluorination [5/] of aromatic systems can be accomplished electrochemically. A number of other reagents add fluorine to benzene and its derivatives, as elaborated in equation 5 [52, 53, 54, 551... [Pg.43]

In the benzene series, an approximately linear relationship has been obtained between the chemical shifts of the para-hydrogen in substituted benzenes and Hammett s a-values of the substituents. Attempts have been made, especially by Taft, ° to use the chemical shifts as a quantitative characteristic of the substituent. It is more difficult to correlate the chemical shifts of thiophenes with chemical reactivity data since few quantitative chemical data are available (cf. Section VI,A). Comparing the chemical shifts of the 5-hydrogen in 2-substituted thiophenes and the parahydrogens in substituted benzenes, it is evident that although —I—M-substituents cause similar shifts, large differences are obtained for -j-M-substituents indicating that such substituents may have different effects on the reactivity of the two aromatic systems in question. Differences also... [Pg.10]

It is notable that pyridine is activated relative to benzene and quinoline is activated relative to naphthalene, but that the reactivities of anthracene, acridine, and phenazine decrease in that order. A small activation of pyridine and quinoline is reasonable on the basis of quantum-mechanical predictions of atom localization encrgies, " whereas the unexpected decrease in reactivity from anthracene to phenazine can be best interpreted on the basis of a model for the transition state of methylation suggested by Szwarc and Binks." The coulombic repulsion between the ir-electrons of the aromatic nucleus and the p-electron of the radical should be smaller if the radical approaches the aromatic system along the nodal plane rather than perpendicular to it. This approach to a nitrogen center would be very unfavorable, however, since the lone pair of electrons of the nitrogen lies in the nodal plane and since the methyl radical is... [Pg.162]

It is difficult to treat the effect of a heteroatom on the localization energies of aromatic systems, but Brown has derived molecular orbital parameters from which he has shown that the rates of attack of the phenyl radical at the three positions of pyridine relatively to benzene agree within 10% with the experimental results. He and his co-workers have shown that the formation of 1-bromoisoquinoline on free-radical bromination of isoquinoline is in agreement with predictions from localization energies for physically reasonable values of the Coulomb parameters, but the observed orientation of the phcnylation of quinoline cannot be correlated with localization ener-... [Pg.176]

Depending on the specific reaction conditions, complex 4 as well as acylium ion 5 have been identified as intermediates with a sterically demanding substituent R, and in polar solvents the acylium ion species 5 is formed preferentially. The electrophilic agent 5 reacts with the aromatic substrate, e.g. benzene 1, to give an intermediate cr-complex—the cyclohexadienyl cation 6. By loss of a proton from intermediate 6 the aromatic system is restored, and an arylketone is formed that is coordinated with the carbonyl oxygen to the Lewis acid. Since a Lewis-acid molecule that is coordinated to a product molecule is no longer available to catalyze the acylation reaction, the catalyst has to be employed in equimolar quantity. The product-Lewis acid complex 7 has to be cleaved by a hydrolytic workup in order to isolate the pure aryl ketone 3. [Pg.117]

The initial step is the coordination of the alkyl halide 2 to the Lewis acid to give a complex 4. The polar complex 4 can react as electrophilic agent. In cases where the group R can form a stable carbenium ion, e.g. a tert-buiyX cation, this may then act as the electrophile instead. The extent of polarization or even cleavage of the R-X bond depends on the structure of R as well as the Lewis acid used. The addition of carbenium ion species to the aromatic reactant, e.g. benzene 1, leads to formation of a cr-complex, e.g. the cyclohexadienyl cation 6, from which the aromatic system is reconstituted by loss of a proton ... [Pg.120]

Figure 14.11 Typical cln omatogram obtained by using the aromatics analyser system. Peak identification is as follows 1, non-aromatics 2, benzene IS, internal standard (MEK) 3, ethylbenzene 4, p-and m-xylenes. Figure 14.11 Typical cln omatogram obtained by using the aromatics analyser system. Peak identification is as follows 1, non-aromatics 2, benzene IS, internal standard (MEK) 3, ethylbenzene 4, p-and m-xylenes.
Furan derivatives with an aromatic system fused on one of the ring s double bonds, such as benzofuran, naphthofuran etc., can be polymerized cationically through the other ring s double bond. In these polymerizations the complications encountered with furan and alkylfurans [see Section III-A-l-c] are absent because only one unsaturation is available for propagation, the other being tied up in the benzene system... [Pg.63]

Benzocyclopropene is an intriguing example in which the electronic structure of benzene is greatly perturbed by the fusion of the smallest alicyclic ring, cyclopropene, to the aromatic system. Benzocyclopropene thus arouses theoretical interest and the high strain energy (approximately 68 kcal./mole)3 associated with the compound suggests unusual chemical reactivity. A review article has recently appeared.4... [Pg.14]

Although the most recent modifications of the Prelog condensation of 1,3-dike-tones and 1,3,5-triketones, for example that of acetylacetone with dimethyl 1,3-acetonedicarboxylate in the presence of NaOH in H2O, afford substituted benzenes such as 1486 in up to 94% yield (Scheme 9.22) and coumarins [40], these condensations of highly substituted polyketones with the corresponding aromatic systems might also be effected in the presence of HMDS 2/TCS 14 or TMSOTf... [Pg.226]

Reactions of partial electrochemical oxidation are of considerable interest in the electrosynthesis of various organic compounds. Thus, at gold electrodes in acidic solutions, olefins can be oxidized to aldehydes, acids, oxides, and other compounds. A good deal of work was invested in the oxidation of aromatic compounds (benzene, anthracene, etc.) to the corresponding quinones. To this end, various mediating redox systems (e.g., the Ce /Ce system) are employed (see Section 13.6). [Pg.283]

Pawliszyn J, Szczeskiak MM, Schemer S. Interactions between aromatic systems-dimers of benzene and S-triazine. J Phys Chem 1984 88 1726-1730. [Pg.311]


See other pages where Aromatic systems benzene is mentioned: [Pg.515]    [Pg.364]    [Pg.5]    [Pg.303]    [Pg.8]    [Pg.3049]    [Pg.515]    [Pg.364]    [Pg.5]    [Pg.303]    [Pg.8]    [Pg.3049]    [Pg.182]    [Pg.1446]    [Pg.251]    [Pg.207]    [Pg.329]    [Pg.138]    [Pg.2]    [Pg.169]    [Pg.13]    [Pg.189]    [Pg.145]    [Pg.44]    [Pg.49]    [Pg.49]    [Pg.57]    [Pg.1010]    [Pg.1535]    [Pg.194]    [Pg.212]    [Pg.49]    [Pg.53]    [Pg.284]    [Pg.34]    [Pg.349]   
See also in sourсe #XX -- [ Pg.281 ]




SEARCH



Aromatic systems

Aromaticity benzene

Benzene system

© 2024 chempedia.info