Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic substitution palladium-catalyzed

Scheme 11.10. Copper- and Palladium-Catalyzed Aromatic Substitution... Scheme 11.10. Copper- and Palladium-Catalyzed Aromatic Substitution...
Chapter 11 focuses on aromatic substitution, including electrophilic aromatic substitution, reactions of diazonium ions, and palladium-catalyzed nucleophilic aromatic substitution. Chapter 12 discusses oxidation reactions and is organized on the basis of functional group transformations. Oxidants are subdivided as transition metals, oxygen and peroxides, and other oxidants. [Pg.1329]

Diazonium salts react with various nucleophiles in water (Eq. 11.62).106 In acidic aqueous solution, p-pheny I e ncbis di azo ni um ion reacts with alcohols more rapidly than it does with water.107 In the presence of nucelophiles such as halides, the substitution products are obtained. Furthermore, diazonium salts of aromatic compounds are excellent substrates for palladium-catalyzed coupling reactions such as the Heck-type reactions in water. [Pg.362]

A palladium-catalyzed one-step synthesis of dihydrobenzo[fc]furan-based fused aromatic heterocycles from bifunctional bromoenoates or bromoalkyl indoles and iodoarenes was reported, and an example is provided in the scheme below <060L3601>. 2-Alkyl- or 2-aryl-substituted benzo[ >]furans were synthesized by a copper-TMEDA catalyzed intramolecular annulation from the corresponding ketones <06OL1467>. [Pg.196]

Fused pyrazole compounds have been prepared from A-alkyl substituted pyrazoles. For example, a palladium-catalyzed/norbornene-mediated sequential coupling reaction involving an aromatic sp2 C-H functionalization as the key step has been described, in which an alkyl-aryl bond and an aryl-heteroaryl bond were formed in one pot <060L2043>. A variety of highly substituted six-membered annulated pyrazoles 59 were synthesized in a one-step process in moderate yields from IV-bromoalkyl pyrazoles 57 and aryl iodides 58. [Pg.216]

A mild and efficient a-heteroarylation of simple esters and amides via nucleophilic aromatic substitution has been described <06OL1447>. Treatment of 2-chloro-benzo[//Jthiazole 99 with tert-butyl propionate in the presence of NaHMDS under nitrogen furnishes tert-butyl 2-(benzo[c(jthiazol-2-yl)propanoate 100. When the same reaction is preformed initially under nitrogen and then exposed to air, the hydroxylation product 101 is obtained. This method offers two desirable features that are either complementary or improvements to the palladium-catalyzed a-arylation reactions. First, heteroaryl chlorides... [Pg.250]

Disubstituted 4-chloro-2-cyclobutenones 75 undergo the palladium-catalyzed cross-coupling reaction with vinyl- and arylstannanes 76 or vinylzir-conium reagents to give the 4-R sa,-2-cyclobutenones 77. Without isolation, these cyclobutenones 77 are rearranged to the substituted phenols 78 on thermolysis [38], Application of this method to the stannylated heteroaromatics 79 provides a synthetic route to the aromatic benzoheterocycles 80 [39]. (Scheme 27 and 28)... [Pg.111]

A variety of substituted seven-membered annulated pyrroles can be synthesized in a one-step process in good yields from readily accessible N-bromoalkyl pyrroles 75 and aryl iodides. The synthesis is based on a palladium-catalyzed/ norbornene-mediated sequential coupling reaction involving an aromatic sp C-H functionalization as the key step. The proposed mechanism suggests that orffzo-alkylation with the formation of intermediate 76 most likely precedes aryl-heteroaryl coupling (Scheme 15 (20060L2043)). [Pg.15]

Substitution of halopurines at C-2 and C-6 has become a well-developed synthetic process, with a wide variety of nucleophilic aromatic substitution and palladium-catalyzed C-N or C-O hond formations exemplified in the literature. The use of selective, sequential substitution reactions on polyhalopurine scaffolds is the basis of an increasing number of combinatorial syntheses of polysubstituted purines, both in solution and on solid phase. The introduction of N-, 0-, or S-substituents has often been combined with transition metal-catalyzed C-C bond-forming reactions (see Section 10.11.7.4.2) and selective N-alkylation (see Section 10.11.5.2.1) to provide versatile routes to purines with multiple, diverse substituents. [Pg.561]

A palladium-catalyzed amidation of halo(hetero)aromatics substituted in the ortAo-position by a carbonyl function with a primary or secondary amine has been introduced as an alternative to the Friedlander condensation for the synthesis of naphthyridinones (and quinolinones) (Scheme 32) <2004OL2433>. [Pg.729]

As mentioned earlier, Ding et al.15 captured a number of dichlorohetero-cyclic scaffolds where one chloro atom is prone to nucleophilic aromatic substitution onto resin-bound amine nucleophiles (Fig. 1). Even though it was demonstrated that in many cases the second chlorine may be substituted with SNAr reactions, it was pointed out that palladium-catalyzed reactions offer the most versatility in terms of substrate structure. When introducing amino, aryloxy, and aryl groups, Ding et al.15 reported Pd-catalyzed reactions as a way to overcome the lack of reactivity of chlorine at the purine C2 position and poorly reactive halides on other heterocycles (Fig. 10). [Pg.449]

Substituted imidazole 1-oxides 228 are predicted to be activated toward electrophilic aromatic substitution, nucleophilic aromatic substitution, and metallation as described in Section 1. Nevertheless little information about the reactivity of imidazole 1-oxides in these processes exists. The reason for this lack may be the high polarity of the imidazole 1-oxides, which makes it difficult to find suitable reaction solvents. Another obstacle is that no method for complete drying of imidazole 1-oxides exists and dry starting material is instrumental for successful metallation. Well documented and useful is the reaction of imidazole 1-oxide 228 with alkylation and acylation reagents, their function as 1,3-dipoles in cycloadditions, and their palladium-catalyzed direct arylation. [Pg.47]

In the alkyne dimerization catalyzed by palladium systems, all proposed mechanisms account for an alkynyl/alkyne intermediate with cis addition of the alkynyl C-Pd bond to the alkyne in a Markovnikov fashion, in which the palladium is placed at the less-substituted carbon, both to minimize steric hindrance and to provide the most stable C-Pd bond (Scheme 2a). The reverse regioselectivity in the palladium-catalyzed dimerization of aryl acetylenes has been attributed to an agostic interaction between the transition metal and ortho protons of the aromatic ring in the substrate (Scheme 2b) [7, 8],... [Pg.65]

The palladium-catalyzed formation of diarylamines has been used in several contexts to form molecules with biological relevance. The ability to prepare haloarenes selectively by an ortho-metallation halogenation sequence allows for the selective delivery of an amino group to a substituted aromatic structure. Snieckus has used directed metallation to form aryl halides that were subsequently reacted with anilines to prepare diarylamines (Eq. 34)) [156]. Frost and Mendon a have reported an iterative strategy to prepare (by palladium-catalyzed chemistry) amides and sulfonamides that may act as peptidomimetics. Diarylamine units are constructed using the DPPF-ligated palladium catalysts, and the products are then acylated or sulfo-nated with 4-bromo benzoyl or arylsulfonyl chlorides [157]. [Pg.231]

The scope and value of the benzannulation reaction is further increased by the substitution pattern of the arene ring, which can be modified by the incorporation of allcynes bearing additional functional groups such as silyl, stannyl, or boryl substituents. These functional groups have been used in various palladium-catalyzed (cross)-coupling reactions [63, 64]. Further structural elaboration may be based on benzannulation followed by nucleophilic aromatic addition [63b]. [Pg.272]

A palladium-catalyzed three-component reaction with 2-iodobenzoyl chloride or methyl 2-iodobenzoate, allene and primary aliphatic or aromatic amines to prepare fV-substituted 4-methylene-3,4-dihydro-1 (27/)-isoquinolin-1 -ones was disclosed <02TL2601>. A synthesis of 1-substituted 1,2,3,4-tetrahydroisoquinolines via a Cp2TiMe2-catalyzed, intramolecular hydroamination/cyclization of aminoalkynes was also reported <02TL3715>. Additionally, a palladium-catalyzed one-atom ring expansion of methoxyl allenyl compounds 79 to prepare compounds 80 that can serve as precursors to isoquinolones was reported <02OL455,02SL480>. [Pg.295]

Traceless solid-phase synthesis of 2,6,9-trisubstituted purines from resin-bound 6-thiopurines <02T7911>, and microwave assisted solid-phase synthesis of 2,6,9-trisubstituted purines <02TL6169> have been described. A resin-capture and release strategy toward combinatorial libraries of 2,6,9-trisubstituted purines has been reported <02JCO183>. Alkylated purines chlorinated at the 6,8- or 2,6,8-positions can be captured onto a solid support and further elaborated by aromatic substitution or via palladium catalyzed crosscoupling reactions <02JA1594>. [Pg.350]


See other pages where Aromatic substitution palladium-catalyzed is mentioned: [Pg.105]    [Pg.706]    [Pg.1338]    [Pg.73]    [Pg.165]    [Pg.296]    [Pg.131]    [Pg.118]    [Pg.97]    [Pg.187]    [Pg.460]    [Pg.499]    [Pg.791]    [Pg.785]    [Pg.1025]    [Pg.256]    [Pg.365]    [Pg.124]    [Pg.339]    [Pg.436]    [Pg.48]    [Pg.68]    [Pg.212]    [Pg.214]    [Pg.319]    [Pg.343]    [Pg.791]    [Pg.76]   
See also in sourсe #XX -- [ Pg.730 , Pg.731 ]

See also in sourсe #XX -- [ Pg.730 ]

See also in sourсe #XX -- [ Pg.418 ]




SEARCH



Palladium aromatization

Palladium substitution

Palladium-catalyzed substitution

© 2024 chempedia.info