Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds electrophilic additions

Arynes are intermediates in certain reactions of aromatic compounds, especially in some nucleophilic substitution reactions. They are generated by abstraction of atoms or atomic groups from adjacent positions in the nucleus and react as strong electrophiles and as dienophiles in fast addition reactions. An example of a reaction occurring via an aryne is the amination of o-chlorotoluene (1) with potassium amide in liquid ammonia. According to the mechanism given, the intermediate 3-methylbenzyne (2) is first formed and subsequent addition of ammonia to the triple bond yields o-amino-toluene (3) and m-aminotoluene (4). It was found that partial rearrangement of the ortho to the meta isomer actually occurs. [Pg.121]

Aromatic hydrocarbons, like paraffin hydrocarbons, react by substitution, but by a different reaction mechanism and under milder conditions. Aromatic compounds react by addition only under severe conditions. For example, electrophilic substitution of benzene using nitric acid produces nitrobenzene under normal conditions, while the addition of hydrogen to benzene occurs in presence of catalyst only under high pressure to... [Pg.41]

Volume 8 Volume 9 Volume 10 Volume 12 Volume 13 Proton Transfer Addition and Elimination Reactions of Aliphatic Compounds Ester Formation and Hydrolysis and Related Reactions Electrophilic Substitution at a Saturated Carbon Atom Reactions of Aromatic Compounds Section 5. POLYMERISATION REACTIONS (3 volumes)... [Pg.343]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

Systematic studies of the selectivity of electrophilic bromine addition to ethylenic bonds are almost inexistent whereas the selectivity of electrophilic bromination of aromatic compounds has been extensively investigated (ref. 1). This surprising difference arises probably from particular features of their reaction mechanisms. Aromatic substitution exhibits only regioselectivity, which is determined by the bromine attack itself, i.e. the selectivity- and rate-determining steps are identical. [Pg.100]

Intramolecular arylation of G-H bonds gives cyclic aromatic compounds. In this intramolecular arylation, the carbon-palladium cr-bond is first formed by the oxidative addition of Pd(0) species and then the resulting electrophilic Pd(n) species undergoes the intramolecular G-H bond activation leading to the formation of the palladacycle, which finally affords the cyclic aromatic compounds via reductive elimination.87 For example, the fluoroanthene derivative is formed by the palladium-catalyzed reaction of the binaphthyl triflate, as shown in Scheme 8.88 This type of intramolecular arylation is applied to the construction of five- and six-membered carbocyclic and heterocyclic systems.89 89 89 ... [Pg.230]

Radical cations resulting from oxidation of olefins, aromatic compounds, amino groups, and so on, can react by electrophilic addition to a nucleophilic center as shown, for example, in Scheme 1 [2, 3]. The double bond activated by an electron-donating substituent is first oxidized leading to a radical cation that attacks the nucleophilic center. The global reaction is a two-electron process corresponding to an ECEC mechanism. [Pg.341]

Reaction of nucleophiles with the polarized N=C bond of azines proceeds via dearomatization and formation of the corresponding 1,2-adduct. With alkyllithiums, for example, it is possible to isolate the dihydro products by careful neutralization of the reaction mixtures these are, in general, rather unstable, however, and can easily be reoxidized to the fully aromatic compounds (Scheme 4). The dihydro adducts formed in these direct nucleophilic addition reactions can also be utilized for the introduction of substituent groups /3 to the heteroatom. Thus, reaction of (35) with one of a number of electrophiles, followed by oxidation of the intermediate dihydro product, constitutes a simple and, in many cases, effective method for the introduction of substituent groups at both the 2- and 5-positions of the pyridine ring (Scheme 4). Use of LAH in this sequence, of course, results in the formation of 3-substituted pyridines. [Pg.38]

The fluorination of other activated aromatic compounds, such as anisole and phenol, undergo monofluorination mainly in the ortho and para positions, whereas the fluorination of deactivated aromatics, such as nitrobenzene, trifluoromethylbenzene and benzoic acid, give predominantly the corresponding meta fluoro-derivatives which is consistent with a typical electrophilic substitution process. Also, fluoro-, chloro- and bromo-benzenes are deactivated with respect to benzene itself but are fluorinated preferentially in the ortho and para positions [139]. At higher temperatures, polychlorobenzenes undergo substitution and addition of fluorine to give chlorofluorocyclohexanes [136]. [Pg.22]

F-Teda BF4 is effective for the selective addition of fluorine to steroids in good yield, re-gioselectively and, in many cases, stereoselectively at the 6- and 16-positions, under very mild reaction conditions (Table 7).92 Further, 6 will also efficiently fluorinate silyl and alkyl enolates, enamides, carbanions, a-alkenes and actived aromatic compounds (Table 8). As an extension of this method F-Teda BF+ has been used for the electrophilic fluorination of (fluorovinyl)tin compounds affording terminal fluoroalkenes (see Table 9).88... [Pg.463]

Vinyl ethers and amines disclose little tendency to revert to type thus, the intermediate formed by reaction with an electrophilic reagent reacts further by adding a nucleophilic species to yield an addition compound cf the sequence (8) — (11). Thiophene and pyrrole have a high degree of aromatic character consequently the initial product formed by reaction of thiophene or pyrrole with an electrophilic species subsequently loses a proton to give a substituted compound cf the reaction sequence (12) — (15). Furan has less aromatic character and often reacts by overall addition as well as by substitution. In electrophilic addition, the first step is the same as for substitution, i.e. the formation of a tr-complex (e.g. 13), but instead of losing a proton this now adds a nucleophile. [Pg.298]

A nucleophilic mechanism can be applied in reductions with complex hydrides of highly fluori-nated aliphatic and alicyclic fluoroalkenes with electron-deficient C = C bonds the hydride anion adds as a strong nucleophilic agent to the more electrophilic carbon atom the intermediate anion can then lose a fluoride ion either from the original C = C bond, or from the allylic position finishing an SN2 displacement of the fluorine. Thus, the reductions of vinylic C-F bonds with hydrides proceed by a nucleophilic addition-elimination mechanism. Displacement of fluorine in highly fluorinated aromatic compounds proceeds by the same mechanism ... [Pg.307]


See other pages where Aromatic compounds electrophilic additions is mentioned: [Pg.237]    [Pg.77]    [Pg.480]    [Pg.150]    [Pg.466]    [Pg.539]    [Pg.848]    [Pg.30]    [Pg.23]    [Pg.213]    [Pg.205]    [Pg.562]    [Pg.39]    [Pg.132]    [Pg.421]    [Pg.425]    [Pg.951]    [Pg.240]    [Pg.132]    [Pg.970]    [Pg.233]    [Pg.232]    [Pg.921]    [Pg.72]    [Pg.326]    [Pg.462]    [Pg.107]    [Pg.72]    [Pg.733]    [Pg.5]    [Pg.150]    [Pg.592]    [Pg.28]   


SEARCH



Addition aromatics

Aromatic compounds, addition

© 2024 chempedia.info