Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous equilibria elements

Abstract Inorganic polysulfide anions and the related radical anions S play an important role in the redox reactions of elemental sulfur and therefore also in the geobio chemical sulfur cycle. This chapter describes the preparation of the solid polysulfides with up to eight sulfur atoms and univalent cations, as well as their solid state structures, vibrational spectra and their behavior in aqueous and non-aqueous solutions. In addition, the highly colored and reactive radical anions S with n = 2, 3, and 6 are discussed, some of which exist in equilibrium with the corresponding diamagnetic dianions. [Pg.127]

The inorganic elements in aqueous solution reactions, both acid-base complex formation, precipitation and oxidation/reduction, frequently come rapidly to equilibrium when no more reactions are possible. The implication is that in the environment and in organisms many of their properties cannot change unless circumstances change, for example the introduction of new components. [Pg.75]

Knowledge of the 90 chemical elements and their properties in compounds led to the construction, by man, of a unique table of elements, the Periodic Table, of 18 Groups in six periods in a pattern fully explained by quantum theory, described in Chapter 2. There is then a huge variety of chemical combinations possible on the Earth and limitations on what is observable are related to element position in this Table. It also relates to the thermodynamic and/or kinetic stability of particular combinations of them in given physical circumstances (Table 11.3). The initial state of the surface of the Earth with which we are concerned was a dynamic water layer, the sea, covering a crust mainly of oxides and some sulfides and with an atmosphere of NH3, HCN, N2, C02(C0, CH4), H20, with some H2 but no 02. This combination of phases and their contents then produced an aqueous solution layer of particular components in which there were many concentration restrictions between it and the components of the other two layers due to thermodynamic stability, equilibria, or kinetic stability of the chemicals trapped in the phases. It is the case that equilibrium... [Pg.416]

Such a method has seldom been used with systems containing an aqueous fluid, probably because the complexity of the solution s free energy surface and the wide range in aqueous solubilities of the elements complicate the numerics of the calculation (e.g., Harvie el al., 1987). Instead, most models employ a procedure of elimination. If the calculation described fails to predict a system at equilibrium, the mineral assemblage is changed to swap undersaturated minerals out of the basis or supersaturated minerals into it, following the steps in the previous chapter the calculation is then repeated. [Pg.67]

Sol id Sol utions. The aqueous concentrations of trace elements in natural waters are frequently much lower than would be expected on the basis of equilibrium solubility calculations or of supply to the water from various sources. It is often assumed that adsorption of the element on mineral surfaces is the cause for the depleted aqueous concentration of the trace element (97). However, Sposito (Chapter 11) shows that the methods commonly used to distinguish between solubility or adsorption controls are conceptually flawed. One of the important problems illustrated in Chapter 11 is the evaluation of the state of saturation of natural waters with respect to solid phases. Generally, the conclusion that a trace element is undersaturated is based on a comparison of ion activity products with known pure solid phases that contain the trace element. If a solid phase is pure, then its activity is equal to one by thermodynamic convention. However, when a trace cation is coprecipitated with another cation, the activity of the solid phase end member containing the trace cation in the coprecipitate wil 1 be less than one. If the aqueous phase is at equil ibrium with the coprecipitate, then the ion activity product wi 1 1 be 1 ess than the sol ubi 1 ity constant of the pure sol id phase containing the trace element. This condition could then lead to the conclusion that a natural water was undersaturated with respect to the pure solid phase and that the aqueous concentration of the trace cation was controlled by adsorption on mineral surfaces. While this might be true, Sposito points out that the ion activity product comparison with the solubility product does not provide any conclusive evidence as to whether an adsorption or coprecipitation process controls the aqueous concentration. [Pg.13]

This review will introduce basic techniques for calculating equilibrium and kinetic stable isotope fractionations in molecules, aqueous complexes, and solid phases, with a particular focus on the thermodynamic approach that has been most commonly applied to studies of equilibrium fractionations of well-studied elements (H, C, N, O, and S) (Urey 1947). Less direct methods for calculating equilibrium fractionations will be discussed briefly, including techniques based on Mossbauer spectroscopy (Polyakov 1997 Polyakov and Mineev 2000). [Pg.66]

Sholkovitz ER, Elderfield H, Szymczak R, Casey K (1999) Island weathering riverine sources of rare earth elements to the western Pacific Ocean. Marine Chem 68 39-57 Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66 2995-3015 Sumner DY (1997) Carbonate precipitation and oxygen stratification in Late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco Formations, Transvaal Supergroup, South Africa. Am J Sci 297 455-487... [Pg.356]

Figure 2.15 E h-pH diagram for galena in aqueous solutions with elemental sulphur as metastable phase. Equilibrium lines correspond to dissolved species at 10 mol/L. Plotted points show the upper and lower limit potential of collectorless flotation of galena reported from Sun (1990,1992) and from Guy and Trahar (1984)... Figure 2.15 E h-pH diagram for galena in aqueous solutions with elemental sulphur as metastable phase. Equilibrium lines correspond to dissolved species at 10 mol/L. Plotted points show the upper and lower limit potential of collectorless flotation of galena reported from Sun (1990,1992) and from Guy and Trahar (1984)...
Figure 2.18 rpH diagram for jamesonite in aqueous solutions with elemental sulphur as metastable phase. Equilibrium lines correspond to dissolved species at 10 moFL... [Pg.41]

Bis [(trifluoromethyl)thio] acetaldehyde (83a) has been prepared from an enam-ine precursor (84), although refluxing in aqueous ethanolic HCl is required to effect this reaction.The aldehyde is less stable than its enol tautomer (83b), and many reactions typical of aldehydes fail. For example, addition of aqueous silver nitrate immediately yields the silver salt of (83b), rather than giving precipitation of (elemental) silver. The (trifluoromethyl)thio substituent has pseudohalogenic character and, together with the hydroxy group, stabilizes the alkene tautomer in the manner of a push-pull alkene. The enol-aldehyde equilibrium mixture in acetonitrile shows an apparent of 2.6 when titrated with aqueous hydroxide. [Pg.24]

Let us consider the distribution of a trace element A and a carrier B between a crystal and an ideal aqueous solution at equilibrium. Defining... [Pg.659]


See other pages where Aqueous equilibria elements is mentioned: [Pg.651]    [Pg.276]    [Pg.243]    [Pg.698]    [Pg.227]    [Pg.412]    [Pg.63]    [Pg.77]    [Pg.738]    [Pg.332]    [Pg.298]    [Pg.14]    [Pg.366]    [Pg.47]    [Pg.95]    [Pg.147]    [Pg.27]    [Pg.30]    [Pg.48]    [Pg.52]    [Pg.63]    [Pg.137]    [Pg.177]    [Pg.233]    [Pg.429]    [Pg.53]    [Pg.29]    [Pg.83]    [Pg.351]    [Pg.58]    [Pg.7]    [Pg.35]    [Pg.20]    [Pg.308]    [Pg.297]    [Pg.548]    [Pg.258]   


SEARCH



Aqueous equilibria

Aqueous equilibria metallic elements

© 2024 chempedia.info