Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antioxidant interaction in food models

Knowledge of the identity of phenolic compounds in food facilitates the analysis and discussion of potential antioxidant effects. Thus studies of phenolic compounds as antioxidants in food should usually by accompanied by the identification and quantification of the phenols. Reversed-phase HPLC combined with UV-VIS or electrochemical detection is the most common method for quantification of individual flavonoids and phenolic acids in foods (Merken and Beecher, 2000 Mattila and Kumpulainen, 2002), whereas HPLC combined with mass spectrometry has been used for identification of phenolic compounds (Justesen et al, 1998). Normal-phase HPLC combined with mass spectrometry has been used to identify monomeric and dimeric proanthocyanidins (Lazarus et al, 1999). Flavonoids are usually quantified as aglycones by HPLC, and samples containing flavonoid glycosides are therefore hydrolysed before analysis (Nuutila et al, 2002). [Pg.330]

The use of HPLC for quantification of phenols is often limited to a single class of phenolics and then often only to low-molecular weight compounds that are available as standards. It is, therefore, often necessary to use colorimetric assays such as the Folin-Ciocalteau assay which rely on the reducing ability of phenols to quantify the amount of total phenolics in a sample (Waterman and Mole, 1994 Singleton et al, 1999 Schofield et al, 2001). The degree of condensation of polyphenols can be quantified by colorimetric assays such as the acid-butanol assay and the vanillin assay (Waterman and Mole, 1994 Schofield et al, 2001). [Pg.330]

The conclusions about the role phenol plays as an antioxidant in real food systems are often reached by comparing the oxidative behaviour of food samples with different contents of phenolic compounds. The variations in phenolics are usually obtained by using products made from different raw materials (e.g. malts containing different levels of polyphenols for production of beer (Andersen et al, 2000)). However, using different raw materials not only affects the levels of phenols, but also affects the levels of transition metals and enzymes which can have profound effects on the oxidative behaviour of the finished product. It is, therefore, often advantageous to study the oxidative behaviour of samples derived from a single batch of production where the level of phenols has either been increased by addition or decreased [Pg.330]

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

The use of real food systems for detailed studies of antioxidants is complicated by a large number of factors which are often unknown or cannot be controlled due to the complex nature of foods. Using simplified model systems, which mimic the main features of a given food system, or antioxidant assays for quantifying the antioxidant action, can be very helpful in clarifying the action of potential antioxidants (Aruoma, 1996 Moller et al, 1999 Prior and Cao, 1999 Frankel and Meyer, 2000). The extrapolation of conclusions based on the behaviour of model systems or antioxidant assays to real complex food systems should generally be done with great care, and should ideally be based on results from more than one model system or assay (Frankel and Meyer, 2000). [Pg.331]


See other pages where Antioxidant interaction in food models is mentioned: [Pg.330]   


SEARCH



Antioxidants in foods

Food interactions

Food model

Interaction model

Interactive model

© 2024 chempedia.info