Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antimony elemental halogens

A complete set of trihalides for arsenic, antimony and bismuth can be prepared by the direct combination of the elements although other methods of preparation can sometimes be used. The vigour of the direct combination reaction for a given metal decreases from fluorine to iodine (except in the case of bismuth which does not react readily with fluorine) and for a given halogen, from arsenic to bismuth. [Pg.213]

In a manner similar to phosphoms, arsenic, and antimony, the bismuth atom can be either tri- or pentacovalent. However, organobismuth compounds are less stable thermally than the corresponding phosphoms, arsenic, or antimony compounds, and there are fewer types of organobismuth compounds. For example, with R MX, R3MX2, R2MX3, and RMX, where M is a Group 15 (VA) element and X is a halogen, only the first two types have been prepared where M = Bi, but all four types are known where M = P, As, or Sb. [Pg.130]

The effect of a particular element on the odour of its compound seems also to lend support to the residual affinity theory, for it is only the elements which possess residual affinity in certain of their compounds, which function as osmophores. Oxygen, nitrogen, sulphur, phosphorous, halogens, arsenic, antimony, bismuth, etc., whose valencies vary under certain conditions are powerfully osmophoric whereas carbon, hydrogen, and many others which have a constant valency are practically non-osmophoric, and it is very instructive to note that the element is osmophoric when it is not employing its full number of valencies and therefore has free affinity. [Pg.37]

The magnetic criterion is particularly valuable because it provides a basis for differentiating sharply between essentially ionic and essentially electron-pair bonds Experimental data have as yet been obtained for only a few of the interesting compounds, but these indicate that oxides and fluorides of most metals are ionic. Electron-pair bonds are formed by most of the transition elements with sulfur, selenium, tellurium, phosphorus, arsenic and antimony, as in the sulfide minerals (pyrite, molybdenite, skutterudite, etc.). The halogens other than fluorine form electron-pair bonds with metals of the palladium and platinum groups and sometimes, but not always, with iron-group metals. [Pg.313]

CsCl HgCl2=3 1, 2 1, 1 1, 2 3, 1 2, and 1 5 and five caesium antimonious fluorides where CsF SbF3=l 1, 3 4, 4 7, 1 2, and 1 3. According to I. Remsen s rale (1889) When a halide of any element combines with a halide of an alkali metal to form a double salt, the number of molecules of the alkali salt which are added to one molecule of the other halide is never greater, and is generally less than the number of halogen atoms contained in the latter—for instance, in the double fluoride of sodium and aluminium, where the negative halide has three fluorine atoms, no more than three molecules of sodium fluoride will be found united with one of aluminium fluoride. [Pg.229]

In the fourth group, carbon and silicon are both non-metallic, while germanium has a very small electrical conductivity. It is only with white tin and lead that the electrical conductivity approaches the normal values for true metals. In the fifth group, arsenic and antimony are just on the limit between metallic and non-metallic properties, while of the elements of the sixth group, only polonium might be considered to have real metallic properties. The halogens, in the seventh group, show no trace of metallic properties. [Pg.239]

A phenomenon not confined to metals, methylation is the attachment of a methyl group to an element and is a significant natural process responsible for much of the environmental mobility of some of the heavier elements. Among the elements for which methylated forms are found in the environment are cobalt, mercury, silicon, phosphorus, sulfur, the halogens, germanium, arsenic, selenium, tin, antimony, and lead. [Pg.229]

The use of polyols such as pentaerythritol, mannitol, or sorbitol as classical char formers in intumescent formulations for thermoplastics is associated with migration and water solubility problems. Moreover, these additives are often not compatible with the polymeric matrix and the mechanical properties of the formulations are then very poor. Those problems can be solved (at least partially) by the synthesis of additives that concentrate the three intumescent FR elements in one material, as suggested by the pioneering work of Halpern.29 b-MAP (4) (melamine salt of 3,9-dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]-undecane-3,9-dioxide) and Melabis (5) (melamine salt of bis(l-oxo-2,6,7-trioxa-l-phosphabicyclo[2.2.2]octan-4-ylmethanol)phosphate) were synthesized from pentaerythritol (2), melamine (3), and phosphoryl trichloride (1) (Figure 6.4). They were found to be more effective to fire retard PP than standard halogen-antimony FR. [Pg.135]


See other pages where Antimony elemental halogens is mentioned: [Pg.258]    [Pg.1590]    [Pg.38]    [Pg.1038]    [Pg.467]    [Pg.207]    [Pg.1038]    [Pg.92]    [Pg.281]    [Pg.921]    [Pg.137]    [Pg.86]    [Pg.1038]    [Pg.130]    [Pg.258]    [Pg.1458]    [Pg.1616]    [Pg.311]    [Pg.1204]    [Pg.484]    [Pg.1204]    [Pg.249]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.3 , Pg.4 , Pg.4 , Pg.4 , Pg.5 , Pg.8 , Pg.13 , Pg.13 , Pg.13 ]




SEARCH



Antimony element

Antimony, elemental

Elemental halogen

Halogens, elemental antimony halides

© 2024 chempedia.info