Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic hydrogen evolution

The amount of chemical reactions relative to electrochemical reactions determines the amount of anodic hydrogen evolution and the value of effective dissolution valence. [Pg.449]

The ions, M , formed by this reaction at a rate, may be carried into a bulk solution in contact with the metal, or may form insoluble salts or oxides. In order for this anodic reaction to proceed, a second reaction which uses the electrons produced, ie, a reduction reaction, must take place. This second reaction, the cathodic reaction, occurs at the same rate, ie, = 7, where and are the cathodic and anodic currents, respectively. The cathodic reaction, in most cases, is hydrogen evolution or oxygen reduction. [Pg.274]

If the potential of a metal surface is moved below line a, the hydrogen reaction line, cathodic hydrogen evolution is favored on the surface. Similarly a potential below line b, the oxygen reaction line, favors the cathodic oxygen reduction reaction. A potential above the oxygen reaction line favors oxygen evolution by the anodic oxidation of water. In between these two lines is the region where water is thermodynamically stable. [Pg.276]

The sum of all the cathodic partial reactions is included in e.g., oxygen reduction according to Eq. (2-17) and hydrogen evolution according to Eq. (2-19). The intermediate formation of anode metal ions of anomalous valence is also possible ... [Pg.182]

Even in good alloys and under favorable conditions, the a value does not lie above about 0.6. In enamelled storage tanks where the current requirement is low, the a value can fall to as low as about 0.1. The cause of the high proportion of selfcorrosion is hydrogen evolution, which occurs as a parallel cathodic reaction according to Eq. (6-5b) or by free corrosion of material separated from the anode on the severely craggy surface [2-4, 19-21]. [Pg.191]

Fig. 6-9 (above) Apparatus for determining the weight loss of galvanic anodes by measuring hydrogen evolution. [Pg.195]

It follows from equation 1.45 that the corrosion rate of a metal can be evaluated from the rate of the cathodic process, since the two are faradai-cally equivalent thus either the rate of hydrogen evolution or of oxygen reduction may be used to determine the corrosion rate, providing no other cathodic process occurs. If the anodic and cathodic sites are physically separable the rate of transfer of charge (the current) from one to the other can also be used, as, for example, in evaluating the effects produced by coupling two dissimilar metals. There are a number of examples quoted in the literature where this has been achieved, and reference should be made to the early work of Evans who determined the current and the rate of anodic dissolution in a number of systems in which the anodes and cathodes were physically separable. [Pg.83]

Fig. 1.34 Corrosion and passivation of Fe-18Cr-SNi stainl s steel. Potentiosiatic anodic curve JKLM, hydrogen evolution reaction, curve Hl low concentration of dissolved oxygen, curve t> FG, high concentration of dissolved oxygen, curve AflC (Section 3... Fig. 1.34 Corrosion and passivation of Fe-18Cr-SNi stainl s steel. Potentiosiatic anodic curve JKLM, hydrogen evolution reaction, curve Hl low concentration of dissolved oxygen, curve t> FG, high concentration of dissolved oxygen, curve AflC (Section 3...
If it is assumed that anodic polarisation of the more negative metal of the couple is insignificant, then it can be shown from the Tafel relationship for the hydrogen evolution reaction that... [Pg.228]

The standard electrode trotential, Ep, 2+ Pb = —Q.126V . shows that lead is thermodynamically unstable in acid solutions but stable in neutral. solutions. The exchange current for the hydrogen evolution reaction on lead is very small (-10 - 10"" Acm ), but control of corrosion is usually due to mechanical passivation of the local anodes of the corrosion cells as the majority of lead salts are insoluble and frequently form protective films or coatings. [Pg.724]

The corrosion of tin by nitric acid and its inhibition by n-alkylamines has been reportedThe action of perchloric acid on tin has been studied " and sulphuric acid corrosion inhibition by aniline, pyridine and their derivatives as well as sulphones, sulphoxides and sulphides described. Attack of tin by oxalic, citric and tartaric acids was found to be under the anodic control of the Sn salts in solution in oxygen free conditions . In a study of tin contaminated by up to 1200 ppm Sb, it was demonstrated that the modified surface chemistry catalysed the hydrogen evolution reaction in deaerated citric acid solution. [Pg.809]

Participation in the electrode reactions The electrode reactions of corrosion involve the formation of adsorbed intermediate species with surface metal atoms, e.g. adsorbed hydrogen atoms in the hydrogen evolution reaction adsorbed (FeOH) in the anodic dissolution of iron . The presence of adsorbed inhibitors will interfere with the formation of these adsorbed intermediates, but the electrode processes may then proceed by alternative paths through intermediates containing the inhibitor. In these processes the inhibitor species act in a catalytic manner and remain unchanged. Such participation by the inhibitor is generally characterised by a change in the Tafel slope observed for the process. Studies of the anodic dissolution of iron in the presence of some inhibitors, e.g. halide ions , aniline and its derivatives , the benzoate ion and the furoate ion , have indicated that the adsorbed inhibitor I participates in the reaction, probably in the form of a complex of the type (Fe-/), or (Fe-OH-/), . The dissolution reaction proceeds less readily via the adsorbed inhibitor complexes than via (Fe-OH),js, and so anodic dissolution is inhibited and an increase in Tafel slope is observed for the reaction. [Pg.811]


See other pages where Anodic hydrogen evolution is mentioned: [Pg.17]    [Pg.19]    [Pg.17]    [Pg.19]    [Pg.500]    [Pg.527]    [Pg.275]    [Pg.277]    [Pg.79]    [Pg.2431]    [Pg.472]    [Pg.14]    [Pg.182]    [Pg.383]    [Pg.444]    [Pg.475]    [Pg.910]    [Pg.39]    [Pg.92]    [Pg.96]    [Pg.104]    [Pg.138]    [Pg.229]    [Pg.322]    [Pg.576]    [Pg.774]    [Pg.803]    [Pg.1235]    [Pg.1294]    [Pg.505]    [Pg.811]    [Pg.822]    [Pg.595]    [Pg.194]    [Pg.69]    [Pg.72]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



Hydrogen evolution

© 2024 chempedia.info