Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium salts, alkyl tetraalkyl, reduction

Besides the effect of the electrode materials discussed above, each nonaqueous solution has its own inherent electrochemical stability which relates to the possible oxidation and reduction processes of the solvent,the salts, and contaminants that may be unavoidably present in polar aprotic solutions. These may include trace water, oxygen, CO, C02 protic precursor of the solvent, peroxides, etc. All of these substances, even in trace amounts, may influence the stability of these systems and, hence, their electrochemical windows. Possible electroreactions of a variety of solvents, salts, and additives are described and discussed in detail in Chapter 3. However, these reactions may depend very strongly on the cation of the electrolyte. The type of cation present determines both the thermodynamics and kinetics of the reduction processes in polar aprotic systems [59], In addition, the solubility product of solvent/salt anion/contaminant reduction products that are anions or anion radicals, with the cation, determine the possibility of surface film formation, electrode passivation, etc. For instance, as discussed in Chapter 4, the reduction of solvents such as ethers, esters, and alkyl carbonates differs considerably in Li or in tetraalkyl ammonium salt solutions [6], In the presence of the former cation, the above solvents are reduced to insoluble Li salts that passivate the electrodes due to the formation of stable surface layers. However, when the cation is TBA, all the reduction products of the above solvents are soluble. [Pg.40]

For instance, the reduction potential of many solvents depends on the salt used and, in particular, on the cation. The reduction potentials of alkyl carbonates and esters in the presence of tetraalkyl ammonium salts (TAA) are usually much lower than in the presence of alkaline ions (Li+, Na+, etc.). Similar effects were observed with the reduction potential of some common contaminants (e.g., H20, 02, C02). Moreover, the reduction products of many alkyl carbonates and esters are soluble in the presence of tetraalkyl ammonium salts, while in the presence of lithium ions, film formation occurs, leading to passivation of the electrode [3],... [Pg.147]

In reviewing the intrinsic electrochemical behavior of nonaqueous systems, it is important to describe reactions of the most common and unavoidable contaminants. Some contaminants may be introduced by the salts (e.g., HF in solutions of the MFX salts M = P, B, As, etc.). Other possible examples are alcohols, which can contaminate esters, ethers, or alkyl carbonates. We examined the possible effect of alcoholic contaminants such as CH3OH in MF and 1,2-propylenegly-col at concentrations of hundreds of ppm in PC solutions. It appears that the commonly used ester or alkyl carbonate solvents are sufficiently reactive (as described above), and so their intrinsic reactivity dominates the surface chemistry if the concentration of the alcoholic contaminant is at the ppm level. We have no similar comprehensive data for ethereal solutions. However, the most important contaminants that should be dealt with in this section, and which are common to all of these solutions, are the atmospheric ones that include 02, H20, and C02. The reduction of these species depends on the electrode material, the solvent used, and their concentration, although the cation plays the most important role. When the electrolyte is a tetraalkyl ammonium salt, the reduction products of H20, 02 or C02 are soluble. As expected, reduction of water produces OH and... [Pg.178]

Tetraalkyl ammonium (TAA) salts are characterized by very low reduction potentials, along with good solubility in many organic solvents. Thus, nonaqueous solutions composed of such salts (e.g., tetrabutyl ammonium perchlorate and organic solvents such as ethers, esters, and alkyl carbonates) can be electrolyzed using noble metal electrodes. In contrast to lithium salt solutions, in TAA-based solutions there is no precipitation of insoluble products on the electrode, which leads to its passivation. Therefore, it is possible to isolate and identify the electrolysis products and thus outline precise reduction mechanisms for the various systems. [Pg.148]




SEARCH



Alkyl reduction

Alkyl salts

Ammonium reduction

Ammonium salts, alkyl

Ammonium salts, alkyl reduction

Reduction alkylation

Reduction reductive alkylation

Reduction salts

Reductive alkylation

Salts, alkylation

Tetraalkyl Ammonium

Tetraalkyl ammonium salts (

Tetraalkyls

© 2024 chempedia.info