Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium perchlorate, nucleation

Some limitations of optical microscopy were apparent in applying [247—249] the technique to supplement kinetic investigations of the low temperature decomposition of ammonium perchlorate (AP), a particularly extensively studied solid phase rate process [59]. The porous residue is opaque. Scanning electron microscopy showed that decomposition was initiated at active sites scattered across surfaces and reaction resulted in the formation of square holes on m-faces and rhombic holes on c-faces. These sites of nucleation were identified [211] as points of intersection of line dislocations with an external boundary face and the kinetic implications of the observed mode of nucleation and growth have been discussed [211]. [Pg.26]

The Avrami—Erofe ev equation, eqn. (6), has been successfully used in kinetic analyses of many solid phase decomposition reactions examples are given in Chaps. 4 and 5. For no substance, however, has this expression been more comprehensively applied than in the decomposition of ammonium perchlorate. The value of n for the low temperature reaction of large crystals [268] is reduced at a 0.2 from 4 to 3, corresponding to the completion of nucleation. More recently, the same rate process has been the subject of a particularly detailed and rigorous re-analysis by Jacobs and Ng [452] who used a computer to optimize curve fitting. The main reaction (0.01 < a < 1.0) was well described by the exact Avrami equation, eqn. (4), and kinetic interpretation also included an examination of the rates of development and of multiplication of nuclei during the induction period (a < 0.01). The complete kinetic expressions required to describe quantitatively the overall reaction required a total of ten parameters. [Pg.59]

Fig. 16. Graphical representation of Arrhenius parameters for the low temperature decomposition of ammonium perchlorate (pelleted, orthorhombic, o, and cubic, , forms). Compensation behaviour is observed. Data from Jacobs and Ng [452]. N = nucleation, B = branching, G = growth processes. Fig. 16. Graphical representation of Arrhenius parameters for the low temperature decomposition of ammonium perchlorate (pelleted, orthorhombic, o, and cubic, , forms). Compensation behaviour is observed. Data from Jacobs and Ng [452]. N = nucleation, B = branching, G = growth processes.
The activation energy of decomposition of both irradiated and unirradiated ammonium perchlorate in the orthorhombic form below 240°C is ca. 18.0 kcal/mole according to Freeman. This seems to indicate that irradiation of ammonium perchlorate does not change the decomposition mechanism but provides many more nucleation sites. [Pg.482]


See other pages where Ammonium perchlorate, nucleation is mentioned: [Pg.285]    [Pg.480]    [Pg.182]    [Pg.431]    [Pg.745]    [Pg.156]   
See also in sourсe #XX -- [ Pg.416 ]




SEARCH



Ammonium perchlorate

© 2024 chempedia.info