Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino randomization

CD-grafted polymers synthesized from poly(iV-acryloxysuccinimide) (poly-NAS), mono-amino randomly methylated p-CD (RAME-p-CD— NH2), and pendant water-soluble phosphane moieties were also used as additives in the aqueous Rh-catalyzed hydroformylation of 1-hexadecene [25]. Within these polymers, both the supramolecular properties of the CD and the coordination ability of the phosphane were combined into the same molecular object. The catalytic results show that increasing the local concentration of the metal-phosphane complex and the CDs at the water/organic interface improves the reaction conversion. The explanation is that—after recognition of the substrate by the CDs, and as they are both graft on the polymer (CD and phosphane)—they... [Pg.25]

Analysis of tlie global statistics of protein sequences has recently allowed light to be shed on anotlier puzzle, tliat of tlie origin of extant sequences [170]. One proposition is tliat proteins evolved from random amino acid chains, which predict tliat tlieir length distribution is a combination of the exponentially distributed random variable giving tlie intervals between start and stop codons, and tlie probability tliat a given sequence can fold up to fonii a compact... [Pg.2844]

White S H 1994 The evolution of proteins from random amino aoid sequenoes II. Evidenoe from the statistioal distributions of the lengths of modern protein sequenoes J. Mol. Evolution 38 383-94... [Pg.2852]

Historically, the discovery of one effective herbicide has led quickly to the preparation and screening of a family of imitative chemicals (3). Herbicide developers have traditionally used combinations of experience, art-based approaches, and intuitive appHcations of classical stmcture—activity relationships to imitate, increase, or make more selective the activity of the parent compound. This trial-and-error process depends on the costs and availabiUties of appropriate starting materials, ease of synthesis of usually inactive intermediates, and alterations of parent compound chemical properties by stepwise addition of substituents that have been effective in the development of other pesticides, eg, halogens or substituted amino groups. The reason a particular imitative compound works is seldom understood, and other pesticidal appHcations are not readily predictable. Novices in this traditional, quite random, process requite several years of training and experience in order to function productively. [Pg.39]

Paraformaldehyde [30525-89-4] is a mixture of polyoxymethylene glycols, H0(CH20) H, with n from 8 to as much as 100. It is commercially available as a powder (95%) and as flake (91%). The remainder is a mixture of water and methanol. Paraformaldehyde is an unstable polymer that easily regenerates formaldehyde in solution. Under alkaline conditions, the chains depolymerize from the ends, whereas in acid solution the chains are randomly cleaved (17). Paraformaldehyde is often used when the presence of a large amount of water should be avoided as in the preparation of alkylated amino resins for coatings. Formaldehyde may also exist in the form of the cycHc trimer trioxane [110-88-3]. This is a fairly stable compound that does not easily release formaldehyde, hence it is not used as a source of formaldehyde for making amino resins. [Pg.323]

Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,... Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,...
Amino acid racemization (Section 27.2) A method for dating archeological samples based on the rate at which the stereochemistry at the a carbon of amino acid components is randomized. It is useful for samples too old to be reliably dated by decay. [Pg.1276]

The predominance of L-amino acids in biological systems is one of life s most intriguing features. Prebiotic syntheses of amino acids would be expected to produce equal amounts of L- and D-enantiomers. Some kind of enantiomeric selection process must have intervened to select L-amino acids over their D-connterparts as the constituents of proteins. Was it random chance that chose L- over D-isomers ... [Pg.98]

All of the structures shown in Figures 7.2 and 7.3 are D-configurations, and the D-forms of monosaccharides predominate in nature, just as L-amino acids do. These preferences, established in apparently random choices early in evolution, persist uniformly in nature because of the stereospecificity of the enzymes that synthesize and metabolize these small molecules. [Pg.212]

Since the proline residue in peptides facilitates the cyclization, 3 sublibraries each containing 324 compounds were prepared with proline in each randomized position. Resolutions of 1.05 and 2.06 were observed for the CE separation of racemic DNP-glutamic acid using peptides with proline located on the first and second random position, while the peptide mixture with proline preceding the (i-alamine residue did not exhibit any enantioselectivity. Since the c(Arg-Lys-0-Pro-0-(i-Ala) library afforded the best separation, the next deconvolution was aimed at defining the best amino acid at position 3. A rigorous deconvolution process would have required the preparation of 18 libraries with each amino acid residue at this position. [Pg.64]

Molecules of interest that contain free amino groups can be coupled in aqueous solution to /S-poIy(L-malate) as amides using carbodiimides such as the water-soluble l-ethyl-3(3-dimethyIaminopropyl)carbodiimide hydrochloride (EDC) [2,12,20,21]. By this method, the molecules are attached randomly. A selective amide bond formation at the carboxylate terminus can be achieved... [Pg.99]

Partial hydrolysis of a peptide can be carried out either chemically with aqueous acid or enzymatically. Acidic hydrolysis is unselective and leads to a more or less random mixture of small fragments, but enzymatic hydrolysis is quite specific. The enzyme trypsin, for instance, catalyzes hydrolysis of peptides only at the carboxyl side of the basic amino acids arginine and lysine chymotrypsin cleaves only at the carboxyl side of the aryl-substituted amino acids phenylalanine, tyrosine, and tryptophan. [Pg.1033]


See other pages where Amino randomization is mentioned: [Pg.2817]    [Pg.2836]    [Pg.453]    [Pg.541]    [Pg.546]    [Pg.548]    [Pg.558]    [Pg.707]    [Pg.65]    [Pg.206]    [Pg.247]    [Pg.238]    [Pg.195]    [Pg.198]    [Pg.77]    [Pg.72]    [Pg.371]    [Pg.373]    [Pg.9]    [Pg.21]    [Pg.93]    [Pg.180]    [Pg.348]    [Pg.349]    [Pg.359]    [Pg.362]    [Pg.484]    [Pg.1146]    [Pg.159]    [Pg.161]    [Pg.167]    [Pg.198]    [Pg.353]    [Pg.406]    [Pg.63]    [Pg.63]    [Pg.18]    [Pg.19]    [Pg.506]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



© 2024 chempedia.info