Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid diagrams

The main feature of the amino acid diagram is that A/a(js shows satisfactory linear correlation with A/part, with a slope of 1.22. Interfacial activity becomes stronger as the hydrophobicity of the amino acid residues increases. Since the amino acids have very hydrophilic amino and carboxyl groups, it may be said that the hydrophobicity increase enhances the amphiphilic character of the amino acids. [Pg.184]

Proteins consist of large numbers of amino-acids joined by the p>eptide link —CO —NH — into chains, as shown in the diagram, where R and R" are amino-acid residues. These chains are called peptides and may be broken into smaller chains by partial hydrolysis (see peptides). Proteins may contain more than one peptide chain thus insulin consists of... [Pg.332]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]

Fig. 5. Schematic diagram of the presumed arrangement of the amino acid sequence for the 5-opioid receptor, showing seven putative transmembrane segments three intracellular loops, A three extracellular loops, B the extracellular N-terrninus and the intracellular C-terrninus, where (0) represents amino acid residues common to ] -, 5-, and K-receptors ( ), amino acid residues common to all three opioid receptors and other neuropeptide receptors and (O), other amino acids. Branches on the N-terruinal region indicate possible glycosylation sites, whereas P symbols in the C-terminal region indicate... Fig. 5. Schematic diagram of the presumed arrangement of the amino acid sequence for the 5-opioid receptor, showing seven putative transmembrane segments three intracellular loops, A three extracellular loops, B the extracellular N-terrninus and the intracellular C-terrninus, where (0) represents amino acid residues common to ] -, 5-, and K-receptors ( ), amino acid residues common to all three opioid receptors and other neuropeptide receptors and (O), other amino acids. Branches on the N-terruinal region indicate possible glycosylation sites, whereas P symbols in the C-terminal region indicate...
Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom. Figure 1.2 Proteins are built up by amino acids that are linked by peptide bonds to form a polypeptide chain, (a) Schematic diagram of an amino acid. Illustrating the nomenclature used in this book. A central carbon atom (Ca) is attached to an amino group (NH2), a carboxyl group (COOH), a hydrogen atom (H), and a side chain (R). (b) In a polypeptide chain the carboxyl group of amino acid n has formed a peptide bond, C-N, to the amino group of amino acid + 1. One water molecule is eliminated in this process. The repeating units, which are called residues, are divided into main-chain atoms and side chains. The main-chain part, which is identical in all residues, contains a central Ca atom attached to an NH group, a C =0 group, and an H atom. The side chain R, which is different for different residues, is bound to the Ca atom.
Figure 1.6 Diagram showing a polypeptide chain where the main-chain atoms are represented as rigid peptide units, linked through the atoms. Each unit has two degrees of freedom it can rotate around two bonds, its Ca-C bond and its N-Ca bond. The angle of rotation around the N-Ca bond is called phi (cj)) and that around the Co-C bond is called psi (xj/). The conformation of the main-chain atoms is therefore determined by the values of these two angles for each amino acid. Figure 1.6 Diagram showing a polypeptide chain where the main-chain atoms are represented as rigid peptide units, linked through the atoms. Each unit has two degrees of freedom it can rotate around two bonds, its Ca-C bond and its N-Ca bond. The angle of rotation around the N-Ca bond is called phi (cj)) and that around the Co-C bond is called psi (xj/). The conformation of the main-chain atoms is therefore determined by the values of these two angles for each amino acid.
Fi re 3.9 Schematic diagram of the structure of one domain of a bacterial muramidase, comprising 450 amino acid residues. The structure is built up from 27 a helices arranged in a two-layered ring. The ring has a large central hole, like a doughnut, with a diameter of about 30 A. [Pg.39]

Figure S.2 Schematic and topological diagrams of an up-and-down fi barrel. The eight p strands are all antiparallel to each other and are connected by hairpin loops. Beta strands that are adjacent in the amino acid sequence are also adjacent in the three-dimensional structure of up-and-down barrels. Figure S.2 Schematic and topological diagrams of an up-and-down fi barrel. The eight p strands are all antiparallel to each other and are connected by hairpin loops. Beta strands that are adjacent in the amino acid sequence are also adjacent in the three-dimensional structure of up-and-down barrels.
Figure S.ll A computer-generated diagram of the structure of y crystallin comprising one polypeptide chain of 170 amino acid residues. The diagram illustrates that the polypeptide chain is arranged in two domains (blue and red). Only main chain (N, C , Ca) atoms and no side chains are shown. Figure S.ll A computer-generated diagram of the structure of y crystallin comprising one polypeptide chain of 170 amino acid residues. The diagram illustrates that the polypeptide chain is arranged in two domains (blue and red). Only main chain (N, C , Ca) atoms and no side chains are shown.
Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]... Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]...
Figure 16.17 The subunit structure of the bacteriophage MS2 coat protein is different from those of other sphericai viruses. The 129 amino acid polypeptide chain is folded into an up-and-down antiparallei P sheet of five strands, P3-P7, with a hairpin at the amino end and two C-terminai a helices. (Adapted from a diagram provided by L. Liijas.)... Figure 16.17 The subunit structure of the bacteriophage MS2 coat protein is different from those of other sphericai viruses. The 129 amino acid polypeptide chain is folded into an up-and-down antiparallei P sheet of five strands, P3-P7, with a hairpin at the amino end and two C-terminai a helices. (Adapted from a diagram provided by L. Liijas.)...
Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,... Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,...
Figure 17.16 Ribbon diagram representations of the structures of domain B1 from protein G (blue) and the dimer of Rop (red). The fold of B1 has been converted to an a-helical protein like Rop by changing 50% of its amino acids sequence. (Adapted from S. Dalai et al.,... Figure 17.16 Ribbon diagram representations of the structures of domain B1 from protein G (blue) and the dimer of Rop (red). The fold of B1 has been converted to an a-helical protein like Rop by changing 50% of its amino acids sequence. (Adapted from S. Dalai et al.,...
Figure 10.1. Schematic diagram showing inhibition of synthesis of amino acids a) single chain inhibition occurs when enzyme controlling committed step (S ) is inhibited by increasing concentrations of product AAj b) branched chain inhibition of by increased concentration of AA2 occurs at a post-branching step (sj), while permitting continued production of product of other branch (AAj). In general, each step is controlled by a single enzyme. Figure 10.1. Schematic diagram showing inhibition of synthesis of amino acids a) single chain inhibition occurs when enzyme controlling committed step (S ) is inhibited by increasing concentrations of product AAj b) branched chain inhibition of by increased concentration of AA2 occurs at a post-branching step (sj), while permitting continued production of product of other branch (AAj). In general, each step is controlled by a single enzyme.
Figure 10.2. Schematic diagram showing how restricted conversion of fatty acids to amino acids influences the fractionation between collagen and CO3 of bone apatite LI = lipid component, PR = protein, T = total isotopic composition AP = COj component of apatite, a) Herbivorous diet (Cj plants only) b) Carnivorous diet, assuming rj = 1 (no barrier to fatty acid conversion to AAs) c) Carnivorous diet, assuming ri < 1 note that carbonate-collagen fractionation is smaller. Figure 10.2. Schematic diagram showing how restricted conversion of fatty acids to amino acids influences the fractionation between collagen and CO3 of bone apatite LI = lipid component, PR = protein, T = total isotopic composition AP = COj component of apatite, a) Herbivorous diet (Cj plants only) b) Carnivorous diet, assuming rj = 1 (no barrier to fatty acid conversion to AAs) c) Carnivorous diet, assuming ri < 1 note that carbonate-collagen fractionation is smaller.
Figure 47-10. Schematic diagram of the structure of human L-selectin. The extracellular portion contains an amino terminal domain homologous to C-type lectins and an adjacent epidermal growth factor-like domain. These are followed by a variable number of complement regulatory-like modules (numbered circles) and a transmembrane sequence (blackdiamond). A short cytoplasmic sequence (open rectangle) is at the carboxyl terminal. The structures of P- and E-selectin are similar to that shown except that they contain more complement-regulatory modules.The numbers of amino acids in L-, P-, and E- selectins, as deduced from the cDNA sequences, are 385,789, and 589, respectively. (Reproduced, with permission, from Bevilacqua MP, Nelson RM Selectins. J Clin Invest 1993 91 370.)... Figure 47-10. Schematic diagram of the structure of human L-selectin. The extracellular portion contains an amino terminal domain homologous to C-type lectins and an adjacent epidermal growth factor-like domain. These are followed by a variable number of complement regulatory-like modules (numbered circles) and a transmembrane sequence (blackdiamond). A short cytoplasmic sequence (open rectangle) is at the carboxyl terminal. The structures of P- and E-selectin are similar to that shown except that they contain more complement-regulatory modules.The numbers of amino acids in L-, P-, and E- selectins, as deduced from the cDNA sequences, are 385,789, and 589, respectively. (Reproduced, with permission, from Bevilacqua MP, Nelson RM Selectins. J Clin Invest 1993 91 370.)...

See other pages where Amino acid diagrams is mentioned: [Pg.525]    [Pg.32]    [Pg.36]    [Pg.59]    [Pg.63]    [Pg.79]    [Pg.107]    [Pg.176]    [Pg.182]    [Pg.188]    [Pg.302]    [Pg.332]    [Pg.388]    [Pg.388]    [Pg.72]    [Pg.1133]    [Pg.1146]    [Pg.1148]    [Pg.118]    [Pg.125]    [Pg.144]    [Pg.163]    [Pg.862]    [Pg.1310]    [Pg.35]    [Pg.505]    [Pg.520]    [Pg.69]    [Pg.516]    [Pg.298]    [Pg.303]    [Pg.311]    [Pg.122]    [Pg.8]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



© 2024 chempedia.info