Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid activation oxidases

Amino acid activating enzymes, 24, 26 Amino acid chloromethyl ketones, 200 purification of, 611 synthesis of, 609, 610 Amino acid oxidase, 37 Aminoacyl-tRNA, 103, 104, 624, 626, 629-631, 707... [Pg.751]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Figure 18.4 Structures of heme/Cu oxidases at different levels of detail, (a) Position of the redox-active cofactors relative to the membrane of CcO (left, only two obligatory subunits are shown) and quinol oxidase (right), (b) Electron transfer paths in mammalian CcO. Note that the imidazoles that ligate six-coordinate heme a and the five-coordinate heme are linked by a single amino acid, which can serve as a wire for electron transfer from ferroheme a to ferriheme as. (c) The O2 reduction site of mammalian CcO the numbering of the residues corresponds to that in the crystal structure of bovine heart CcO. The subscript 3 in heme as and heme 03 signifies the heme that binds O2. The structures were generated using coordinates deposited in the Protein Data Bank, lari [Ostermeier et al., 1997] Ifft [Abramson et al., 2000] (a) and locc [Tsukihara et al., 1996] (b, c). Figure 18.4 Structures of heme/Cu oxidases at different levels of detail, (a) Position of the redox-active cofactors relative to the membrane of CcO (left, only two obligatory subunits are shown) and quinol oxidase (right), (b) Electron transfer paths in mammalian CcO. Note that the imidazoles that ligate six-coordinate heme a and the five-coordinate heme are linked by a single amino acid, which can serve as a wire for electron transfer from ferroheme a to ferriheme as. (c) The O2 reduction site of mammalian CcO the numbering of the residues corresponds to that in the crystal structure of bovine heart CcO. The subscript 3 in heme as and heme 03 signifies the heme that binds O2. The structures were generated using coordinates deposited in the Protein Data Bank, lari [Ostermeier et al., 1997] Ifft [Abramson et al., 2000] (a) and locc [Tsukihara et al., 1996] (b, c).
FIGURE 29-2. Levodopa absorption and metabolism. Levodopa is absorbed in the small intestine and is distributed into the plasma and brain compartments by an active transport mechanism. Levodopa is metabolized by dopa decarboxylase, monoamine oxidase, and catechol-O-methyltransferase. Carbidopa does not cross the blood-brain barrier. Large, neutral amino acids in food compete with levodopa for intestinal absorption (transport across gut endothelium to plasma). They also compete for transport across the brain (plasma compartment to brain compartment). Food and anticholinergics delay gastric emptying resulting in levodopa degradation in the stomach and a decreased amount of levodopa absorbed. If the interaction becomes a problem, administer levodopa 30 minutes before or 60 minutes after meals. [Pg.478]

With the death of the bean, cellular structure is lost, allowing the mixing of water-soluble components that normally would not come into contact with each other. The complex chemistry that occurs during fermentation is not fully understood, but certain cocoa enzymes such as glycosidase, protease, and polyphenol oxidase are active. In general, proteins are hydrolyzed to smaller proteins and amino acids, complex glycosides are split, polyphenols are partially transformed, sugars are hydrolyzed, volatile acids are formed, and purine alkaloids diffuse into the bean shell. The chemical composition of both unfermented and fermented cocoa beans is compared in Table 1. [Pg.175]

Hamase, K., Inoue, T., Morikawa, A., Konno, R., Zaitsu, K. (2001). Determination of free d-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Anal. Biochem. 298, 253-258. [Pg.341]

Fortier [6] found that AQ polymer from Eastman was not deleterious for the activity of a variety of enzymes such as L-amino acid oxidase, choline oxidase, galactose oxidase, and GOD. Following mixing of the enzyme with the AQ polymer, the mixture was cast and dried onto the surface of a platinum electrode. The film was then coated with a thin layer of Nafion to avoid dissolution of the AQ polymer film in the aqueous solution when the electrode was used as a biosensor. These easy-to-make amperometric biosensors, which were based on the amperometric detection of H202, showed high catalytic activity. [Pg.557]

The realization of the widespread occurrence of amino acid radicals in enzyme catalysis is recent and has been documented in several reviews (52-61). Among the catalytically essential redox-active amino acids glycyl [e.g., anaerobic class III ribonucleotide reductase (62) and pyruvate formate lyase (63-65)], tryptophanyl [e.g., cytochrome peroxidase (66-68)], cysteinyl [class I and II ribonucleotide reductase (60)], tyrosyl [e.g., class I ribonucleotide reductase (69-71), photosystem II (72, 73), prostaglandin H synthase (74-78)], and modified tyrosyl [e.g., cytochrome c oxidase (79, 80), galactose oxidase (81), glyoxal oxidase (82)] are the most prevalent. The redox potentials of these protein residues are well within the realm of those achievable by biological oxidants. These redox enzymes have emerged as a distinct class of proteins of considerable interest and research activity. [Pg.158]

Flavin oxidation of carbanions has also been of much concern since active intermediates in some flavoenzyme-mediated reactions (amino acid oxidase, lactate oxidase, etc.) are carbanions (Kosman, 1977). Flavin oxidation of nitroethane carbanion (20), which had not been achieved in non-enzymatic systems, occurs with [56] bound to CTAB micelles (Shinkai etal., 1976b). This suggests that the nitroethane carbanion is also activated by the micellar environment. [Pg.469]

All amino acids except glycine exist in these two different isomeric forms but only the L isomers of the a-amino acids are found in proteins, although many D amino acids do occur naturally, for example in certain bacterial cell walls and polypeptide antibiotics. It is difficult to differentiate between the D and the L isomers by chemical methods and when it is necessary to resolve a racemic mixture, an isomer-specific enzyme provides a convenient way to degrade the unwanted isomer, leaving the other isomer intact. Similarly in a particular sample, one isomer may be determined in the presence of the other using an enzyme with a specificity for the isomer under investigation. The other isomer present will not act as a substrate for the enzyme and no enzymic activity will be demonstrated. The enzyme L-amino acid oxidase (EC 1.4.3.2), for example, is an enzyme that shows activity only with L amino acids and will not react with the D amino acids. [Pg.348]

Many of the amino acids originally tested by Krebs were racemic mixtures. When naturally occurring L-amino acids became available the oxidase was found to be sterically restricted to the unnatural, D series. [D-serine occurs in worms free and as D-phosphoryl lombricine (Ennor, 1959)]. It could not therefore be the enzyme used in the liver to release NH3 in amino acid metabolism. D-amino acid oxidase was shown by Warburg and Christian (1938) to be a flavoprotein with FAD as its prosthetic group. A few years later Green found an L-amino acid oxidase in liver. It was however limited in its specificity for amino acid substrates and not very active—characteristics which again precluded its central role in deamination. [Pg.109]


See other pages where Amino acid activation oxidases is mentioned: [Pg.371]    [Pg.308]    [Pg.43]    [Pg.54]    [Pg.106]    [Pg.605]    [Pg.99]    [Pg.84]    [Pg.135]    [Pg.136]    [Pg.252]    [Pg.965]    [Pg.186]    [Pg.533]    [Pg.557]    [Pg.280]    [Pg.237]    [Pg.881]    [Pg.882]    [Pg.76]    [Pg.913]    [Pg.926]    [Pg.943]    [Pg.955]    [Pg.360]    [Pg.217]    [Pg.159]    [Pg.231]    [Pg.285]    [Pg.255]    [Pg.260]    [Pg.166]    [Pg.41]    [Pg.153]   
See also in sourсe #XX -- [ Pg.170 , Pg.324 ]




SEARCH



Amino acid activities

Amino acid oxidase

Amino acids, activation

D-Amino acid oxidase activation

© 2024 chempedia.info