Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiocyanates amines

Hattori, K., Yoshida, T., and Cuculo, J.A., Dissolution and solution properties of cellulose in the amine/thiocyanate salt system, Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, 2004. [Pg.767]

Care must be exercised in using sodium nitrite near other chemicals. It is incompatible with ammonium salts, thiocyanates, thiosulfates, and strong reducing agents. In acid solutions, sodium nitrite evolves toxic NO in the presence of secondary amines it can form nitrosamines which are suspected carcinogens. [Pg.199]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Ammonium thiocyanate reacts with amines yielding thioureas, such as naphthyl thiourea [86-88-4] ... [Pg.151]

Thorium compounds of anionic nitrogen-donating species such as [Th(NR2)4], where R = alkyl or sdyl, are weU-known. The nuclearity is highly dependent on the steric requirements of R. Amides are extremely reactive, readily undergoing protonation to form amines or insertion reactions with CO2, COS, CS2, and CSe2 to form carbamates. Tetravalent thorium thiocyanates have been isolated as hydrated species, eg, Th(NCS)4(H20)4 [17837-16-0] or as complex salts, eg, M4 Th(NCS)g] vvH20, where M = NH, Rb, or Cs. [Pg.38]

The majority of U(V1) coordination chemistry has been explored with the trans-ddo s.o uranyl cation, UO " 2- The simplest complexes are ammonia adducts, of importance because of the ease of their synthesis and their versatihty as starting materials for other complexes. In addition to ammonia, many of the ligand types mentioned ia the iatroduction have been complexed with U(V1) and usually have coordination numbers of either 6 or 8. As a result of these coordination environments a majority of the complexes have an octahedral or hexagonal bipyramidal coordination environment. Examples iuclude U02X2L (X = hahde, OR, NO3, RCO2, L = NH3, primary, secondary, and tertiary amines, py n = 2-4), U02(N03)2L (L = en, diamiaobenzene n = 1, 2). The use of thiocyanates has lead to the isolation of typically 6 or 8 coordinate neutral and anionic species, ie, [U02(NCS)J j)/H20 (x = 2-5). [Pg.330]

Bromo-6,7,8,9-tetrahydro-l//-3-benzazepin-2-amine(6) with thiocyanate ion undergoes substitution of bromide to give the thiocyanatotetrahydro-l//-3-benzazepine 7.105 Attempts to replace bromide by azide ion failed, as did diazotization of the amine group with sodium nitrite in 6 M sulfuric acid. Oddly, treatment of the aminobromo compound with sodium borohydride in methanol results not in reduction, but in methoxy-debromination to give the 2-methoxy derivative which, on the basis of HNMR spectral data, is best represented as the 2-imino tautomer 8. [Pg.169]

Aminodebromination of 4-bromo-l//-3-benzazepin-2-amine (25) with triethylamine occurs readily and results in formation of the quaternary salt 26 (see also Section 3.2.1.5.6.), whereas attempts to effect nucleophilic substitution of bromide with primary or secondary amines gives only tarry mixtures.41 The bromo group is also resistant to displacement by azide and benz-cncthiolate but undergoes substitution with thiocyanate ion in hot dimethylformamide to give the 4-thiocyanato derivative 27 rather than the thiourea by addition at the amine function. [Pg.270]

Successive treatment of 2-(bromomethyl)benzoyl bromide with ammonium thiocyanate and a secondary amine gives the acylthioureas 2, which cyclize in the presence of sodium carbonate to the 3-(disubstituted amino)benzothiazepinones 3.47... [Pg.324]

One-phase titration methods have also been developed. These methods are not truly one-phase titrations but the term is used to indicate the absence of a second organic phase. One of these methods, applied to the analysis of sodium and triethanolamine lauryl sulfates and lauryl ether sulfates, use a quaternary amine as a titrant and cobalt(II) thiocyanate as indicator. Centrimide was found to avoid the use of chloroform which was not possible with other titrants examined, such as domiphen bromide and oxyphenonium bromide. The pink color of the indicator changes to violet as an excess of titrant forms a complex with the indicator [238]. [Pg.281]

Alkyl halides or sulfuric or sulfonic esters can be heated with sodium or potassium thiocyanate to give alkyl thiocyanates, though the attack by the analogous cyanate ion (10-66) gives exclusive N-alkylation. Primary amines can be converted to thiocyanates by the Katritzky pyrylium-pyridinium method (pp. 447, 489). "... [Pg.499]

Amines (long-chain primary, secon- Cobalt(II) thiocyanate Long-chain primary, secondary and tertiary amines and long-chain quaternary ammonium salts yield blue chromato- ... [Pg.32]

Recently nitrosamines have attracted attention because of their marked carcinogenic activity in a wide variety of animal species Q, ). Nitrosamines are likely to be carcinogens in man as well human exposure to these compounds is by ingestion, inhalation, dermal contact and vivo formation from nitrite and amines Nitrite and amines react most rapidly at an acidic pH A variety of factors, however, make nitrosation a potentially important reaction above pH 7 these include the presence of microorganisms, and the possibilities of catalysis by thiocyanate, metals and phenols, and of transnitrosation by other nitroso compounds. [Pg.157]

When hot, ammonia and compounds, which contain nitrogen-hydrogen bonds eg ammonium salts and cyanides react violently with chlorates and alkaline perchlorates. Diammonlum sulphate, ammonium chloride, hydroxyl-amine, hydrazine, sodamide, sodium cyanide and ammonium thiocyanate have been cited. So far as hydrazine is concerned, the danger comes from the formation of a complex with sodium or lithium perchlorate, which is explosive when ground. Many of these interactions are explosive but the factors which determine the seriousness of the accident are not known. [Pg.191]


See other pages where Thiocyanates amines is mentioned: [Pg.301]    [Pg.306]    [Pg.383]    [Pg.301]    [Pg.3755]    [Pg.301]    [Pg.306]    [Pg.383]    [Pg.301]    [Pg.3755]    [Pg.404]    [Pg.591]    [Pg.215]    [Pg.351]    [Pg.551]    [Pg.108]    [Pg.329]    [Pg.378]    [Pg.170]    [Pg.156]    [Pg.281]    [Pg.110]    [Pg.203]    [Pg.290]    [Pg.301]    [Pg.162]    [Pg.77]    [Pg.144]    [Pg.149]    [Pg.160]    [Pg.209]    [Pg.215]    [Pg.232]    [Pg.253]    [Pg.1179]    [Pg.234]    [Pg.324]   
See also in sourсe #XX -- [ Pg.729 ]




SEARCH



Amines acid thiocyanation

Amines aromatic, thiocyanation

Thiocyanates from amines

Thiocyanation of aromatic amines

© 2024 chempedia.info