Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines boron enolates

Boron enolates can be prepared by reaction of the ketone with a dialkylboron trifluoromethanesulfonate (triflate) and a tertiary amine.16 Use of boron triflates and a bulky amine favors the Z-enolate. The resulting aldol products are predominantly the syn stereoisomers. [Pg.72]

Boron enolates can be obtained from esters40,41 and amides42 by methods that are similar to those used for ketones. Various combinations of borylating reagents and amines have been used and the E.Z ratios are dependent on the reagents and conditions. In most cases esters give Z-enolates, which lead to syn adducts, but there are exceptions. Use of branched-chain alcohols increases the amount of anti enolate, and with t-butyl esters the product ratio is higher than 97 3. [Pg.80]

These oxazolidinones can be acylated and converted to the lithium, boron, tin, or titanium enolates by the same methods applicable to ketones and esters. For example, when they are converted to boron enolates using di-n-butylboron triflate and triethyl-amine, the enolates are the Z-stereoisomers.125... [Pg.114]

Boron enolates are often used for aldol reactions. Boron enolates are usually prepared from the corresponding carbonyl compounds, tertiary amine, and a boron source (e.g., dibutylboron triflates). The aldol reactions proceed via a six-membered transition state to give high diastereo-selectivity which depends upon the geometry of the boron enolates. [Pg.427]

Usually, (Z)-boron enolates can be prepared by treating /V-acyl oxazolidones with di-K-butylboron triflate and triethylamine in CH2CI2 at 78°C, and the enolate then prepared can easily undergo aldol reaction at this temperature to give a, vy -aldol product with more than 99% diastereoselectivity (Scheme 3-4). In this example, the boron counterion plays an important role in the stereoselective aldol reaction. Triethylamine is more effective than di-wo-propylethyl amine in the enolization step. Changing boron to lithium leads to a drop in stereoselectivity. [Pg.139]

The is-boron enolates of some ketones can be preferentially obtained with the use of dialkylboron chlorides.17 The data in Table 2.3 pertaining to 3-pentanone and 2-methyl-3-pentanone illustrate this method. Use of boron triflates with a more hindered amine favors the Z-enolate. The contrasting stereoselectivity of the boron triflates and chlorides has been discussed in terms of reactant conformation and the stereoelectronic requirement for perpendicular alignment of the hydrogen being removed with the carbonyl group.18 The... [Pg.71]

Simultaneous treatment of a carbonyl compound with a Lewis acid and a tertiary amine or another weak base ( soft enolization ) can sometimes be used to generate enolates of sensitive substrates which would have decomposed under strongly basic reaction conditions [434]. Boron enolates, which readily react with aldehydes at low temperatures, can also be prepared in situ from sensitive, base-labile ketones or carboxylic acid derivatives [293, 295, 299]. Unwanted decomposition of a carbanion may also be prevented by generating it in the presence of an electrophile which will not react with the base (e.g. silyl halides or silyl cyanides [435]). [Pg.182]

Crotonyl Enolate Aldol Reactions. Boron enolates of the A/-crotonyloxazolidinones have been shown to afford the expected. n-aldol adducts (eq 36). The propensity for selfcondensation during the enolization process is minimized by the use of triethylamine over less kinetically basic amines. [Pg.62]

Although stereoselective formation of enolates from acyclic ketones with bases such as LDA is rather difficult, stereodefined boron enolates are more readily accessible. In the Mukaiyama method, an ethyl ketone is treated with a dialkylboron triflate and a tertiary amine, usually i-Pr2NEt. The resultant Z-(0) boron enolates (also known as enol borinates) are believed to be formed under kinetic control by deprotonation of the Lewis acid-complexed substrate. Brown and co-workers have shown that E- 0) boron enolates may be prepared by treatment of ethyl ketones with dicyclohexylboron chloride in the presence of Et3N. ... [Pg.248]

In analogous fashion, titanium and tin enolates are formed by the reaction of enolizable ketones with a tertiary amine and TiCl4 or SnOTf2, respectively. The reactions of titanium enolates are highly selective and comparable to boron enolates in aldol condensations. [Pg.248]

Later in the book, when we deal with asymmetric enolate reactions, boron enolates will be very important. A simple example20 of an aldol reaction with a boron enolate, prepared from the ester 149 and a boron triflate using an amine as base, shows why. The boron enolate 150 could be prepared with a weak base and reacts with the aldehyde without catalysis to give essentially one diastereoisomer of the aldol 151 in good yield. If the titanium enolate (prepared with TiCI4 and an amine) was used, both the yield and the stereoselectivity were worse. In other circumstances enolates of titanium and other metals are very successful. [Pg.152]

Boron or tin (II) Z-enolates are generated by reaction with the corresponding triflates with a carbonyl compound in the presence of tertiary amines like r-P NEt or. M-ethylpiperidine (except when using dicyclopentylboron triflate [407]). E-Enolates are prepared by using dicyclohexyl- or other cyclic chloroboranes in the presence of Et3N or Me NEt [407, 685, 686, 1246, 1247, 1248], Because enolization does not take place under such conditions with esters or aliphatic tertiary amides, thiophenyl esters RGH COSPh have been used as ester/amide substitutes. Furthermore, Z-boron enolates of ketones can be prepared by conjugate addition of acid derivatives of dialkylboranes to a-enones [687],... [Pg.307]

Excellent results have been obtained by using boron enolates (alkenyloxyboranes or enol borinates), in what is commonly known as a boron-mediated aldol reaction. The boron enolates are prepared easily from the corresponding ketone and a dialkylboron trifluoromethanesulfonate (dialkylboron triflate, R2BOTf) or chloride (R2BCI) and a tertiary amine base. Boron enolates react readily with aldehydes to give, after oxidative work-up of the resulting borinate species, high yields of the desired aldol product (1.58). [Pg.30]

Cross-coupling reactions leading to the formation of C-X (X = heteroatom) bonds catalyzed by Pd(dba)2 have been reported. Aniline derivatives have been prepared via reaction of amine nucleophiles with aryl halides in the presence of Pd(dba)2 and phosphines, especially P( Bu)3. Likewise, diaryl and aryl alkyl ethers are produced from aryl halides (Cl, Br, I) and sodium aryloxides and alkoxides under similar conditions. Conditions effective for the coupling of aryl chlorides with amines, boronic acids, and ketone enolates using an easily prepared phosphine chloride as a ligand have recently been uncovered (eq 22). The preparation of aryl siloxanes and allyl boronates via Pd(dba)2-catalyzed C-Si and C-B coupling have been reported as well. [Pg.6]

Shibasaki [89a] has reported an asymmetric synthesis of (-h) PS-5 by using the boron enolate-imine condensation reaction. The most notable features of this approach were that the correct absolute stereochemistry at C3-C4 of the p-lactam ring was produced in a highly diastereoselective fashion and imines derived from aliphatic amines could be used in this reaction in a similar way to the silyl ketene acetal approach (Scheme 32). [Pg.589]


See other pages where Amines boron enolates is mentioned: [Pg.325]    [Pg.325]    [Pg.477]    [Pg.21]    [Pg.76]    [Pg.901]    [Pg.229]    [Pg.290]    [Pg.901]    [Pg.901]    [Pg.162]    [Pg.312]    [Pg.324]    [Pg.437]    [Pg.920]    [Pg.437]    [Pg.920]    [Pg.173]    [Pg.901]    [Pg.184]    [Pg.290]    [Pg.693]    [Pg.291]    [Pg.870]    [Pg.402]    [Pg.33]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Amination enolate

Amine enolates

Boron enolate

Enolates, amination

© 2024 chempedia.info