Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides by oxidation

Another interesting sequence is the amidoselenenation of alkenes for the synthesis of allylic amides. The seleniranium ion is trapped by a nitrile group which is first converted to an iminium chloride and then hydrolyzed to the amide (similar to the Ritter amide synthesis). Several differing nitriles (e.g. methyl to phenyl) have been utilized and all provide good yields of amides. The stereochemistry of addition is always trans but mixtures of regioisomers occur with terminal and unsymmetrically substituted oleflns (equation 24). The -seleno amide is easily converted to the allylic amide by oxidation of the phenyl selenide using the standard conditions. ... [Pg.523]

The stereospecific conversion of cyclohexene into the corresponding amido selenide 54 is illustrated in Scheme 8. These amidoselenenylation reactions are commonly employed for the preparation of allylic and saturated amides by oxidative or reductive deselenenylation. Propionitrile, butyronitrile, benzonitrile and ethyl cyanoacetate may be used in place of acetonitrile. Styrene gave poor results and other electron-rich olefins such as 1-methylcyclohexene or 2,3-di-methylbut-2-ene did not give the amidoselenenylation products. The reaction can also be effected starting from the hydroxy- or methoxyselenenylation products of alkenes, in the presence of water and trifluoromethanesulfonic acid in this case the nitriles are used in stoichiometric amounts [48c]. This methodology was employed to prepare the amidoselenenylation products of styrene, 55, and of electron-rich olefins. It was necessary, however, to replace the phenyl-... [Pg.20]

Aromatic and allylic aldehydes are converted into amides by oxidation at —20° with nickel peroxide in the presence of ammonia. At higher temperatures nitriles are formed. [Pg.369]

Other carbon electrophiles which are frequently employed include aldehydes, ketones, esters, nitriles and amides of the type RCONMei. An indirect method of acylation involves the initial reaction of a lithio compound with an aldehyde followed by oxidation of the resulting secondary alcohol to the corresponding acyl derivative. [Pg.80]

Benzisothiazoles are best prepared by oxidative cyclization of o-aminothiobenz-amides (see Section 4.17.9.1.1), reaction of o-toluidines with thionyl chloride (see Section 4.17.9.2.1) or by sulfuration of 2,1-benzisoxazoles (see Section 4.17.10.2). 1,2-Benzisothiazoles can also be prepared from o-disubstituted benzene compounds, cyclodehydration of o-mercaptobenzaldoximes or oxidative cyclization of p-mercaptobenzylamines (see Section 4.17.9.1.1) being the most convenient. Both series of benzo compounds are readily substituted at the 5- and 7-positions by electrophilic reagents. [Pg.173]

Chlorine Tolerance Most of the best RO membranes are attacked by oxidants, and they are particularly susceptible to chlorine. A particularly sensitive locus for attack is the amidic hydrogen. Cellu-losic membranes are generally less sensitive, and pass the chlorine into the permeate giving downstream biocidal activity, veiy useful for under-the-sink RO. These factors are largely responsible for CA s survival in RO membranes. Chlorine, whatever its vices, has the virtue of being a known, effective, residual bactericide and a good inhibitor of... [Pg.2036]

Triazole has been prepared by the oxidation of substituted 1,2,4-triazoles, by the treatment of urazole with phosphorus pentasulfide, by heating equimolar quantities of formyl-hydrazine and formamide, by removal of the amino function of 4-amino-l,2,4-triazole, by oxidation of l,2,4-triazole-3(5)-thiol with hydrogen peroxide, by decarboxylation of 1,2,4-triazole-3(5)-carboxylic acid, by heating hydrazine salts with form-amide,by rapidly distilling hydrazine hydrate mixed with two molar equivalents of formamide, i by heating N,N -diformyl-hydrazine with excess ammonia in an autoclave at 200° for 24 hours, and by the reaction of 1,3,5-triazine and hydrazine monohydrochloride. ... [Pg.102]

For synthetic purposes, aldol-rype condensations of aldehydes with esters or amides are potentially of great utility because the carbonyl group is easily transformed either by further additions or by oxidation or reduction. Deprotonation of an ester [7, 19, 20] or amide of fluoroacetic acid [9, 27] has led to aldol condensations in high yields (equation 17) (Table 7)... [Pg.625]

Because of their higher oxidation level with respect to both amides and nitrones, hydroxamic acids have been sought from either by oxidative processes. [Pg.214]

Isothiazole-3-carboxylic acid and its 4-bromo derivative have been obtained by oxidation of the corresponding aldehydes with silver oxide. They form acid chlorides, esters, and amides. The amides may be dehydrated to give the corresponding nitriles. ... [Pg.118]

A heterocyclic ring may be used in place of one of the benzene rings without loss of biologic activity. The first step in the synthesis of such an agent starts by Friedel-Crafts-like acylation rather than displacement. Thus, reaction of sulfenyl chloride, 222, with 2-aminothiazole (223) in the presence of acetic anhydride affords the sulfide, 224. The amine is then protected as the amide (225). Oxidation with hydrogen peroxide leads to the corresponding sulfone (226) hydrolysis followed by reduction of the nitro group then affords thiazosulfone (227). ... [Pg.141]

Besides the technical method starting from naphthalene, phthalic acid and its substituted derivatives can be prepared by oxidation of o-xylene to phthalic acid with potassium permanganate. This compound can be subsequently transformed via an anhydride, imide, and amide to a derivative of phthalonitrile, which is the more convenient starting material for several coordination compounds. The synthesis of the ferf-butyl-substituted dicarbonitrile, which is a very common starting material for highly soluble phthalocyanines, is shown below.97,105... [Pg.724]

In a similar reaction, tertiary amines are converted to amides " and cyclic tertiary amines (e.g., 30) can be converted to lactams by oxidation with Hg —EDTA complex in basic solution. [Pg.1535]

In other studies, the combination of alkoxides and chlorides, or alkoxides and amides without oxidant have been used to deposit hafnium silicate thin films by ALD [3,7],... [Pg.375]

Amide nitrogens can be protected by 4-methoxy or 2,4-dimethoxyphenyl groups. The protecting group can be removed by oxidation with ceric ammonium nitrate.243 2,4-Dimethoxybenzyl groups can be removed using anhydrous trifluoroacetic acid.244... [Pg.271]

The differences in reactivity of these halides make available compounds bearing two different amine substituents. Nitration of aldehyde 104, followed by oxidation affords the acid 106. The acid is then converted to the primary amide (107), and the nitro group is reduced catalytically to the corresponding... [Pg.381]

The pseudobenzylisoquinoline alkaloids are fairly widespread in nature, being found among members of Berberidaceae, Annonaceae, Fumariaceae, and Ranunculaceae. The biogenesis of the pseudobenzylisoquinoline alkaloids assumes their formation from protoberberinium salts by C-8—C-8a bond scission in a Baeyer-Villiger-type oxidative rearrangement to produce the enamides of type 73 and 74. These amides may be further biotransformed either to rugosinone (76) type alkaloids by hydrolytic N-deformylation followed by oxidation or to ledecorine (75) by enzymatic reduction. These transformations were corroborated by in vitro studies (80-82). It is suggested that enamide seco alkaloids may be precursors of aporphine alkaloids (80), on one hand, and of cularine alkaloids (77), on the other. [Pg.257]

It was postulated (169) that these amides are 8,8a-secobenzophenanthridine alkaloids produced by oxidative cleavage of ring B of the corresponding benzophenanthridines. The success of Baeyer-Villiger-type oxidations of the immonium bond of benzophenanthridine skeletons (168,171,172,175) indicates that this type of oxidation could be a real biological pathway. [Pg.294]


See other pages where Amides by oxidation is mentioned: [Pg.79]    [Pg.233]    [Pg.79]    [Pg.233]    [Pg.274]    [Pg.260]    [Pg.23]    [Pg.176]    [Pg.1]    [Pg.456]    [Pg.304]    [Pg.60]    [Pg.583]    [Pg.677]    [Pg.174]    [Pg.180]    [Pg.13]    [Pg.359]    [Pg.86]    [Pg.186]    [Pg.72]    [Pg.178]    [Pg.249]    [Pg.46]    [Pg.6]    [Pg.167]    [Pg.81]    [Pg.204]    [Pg.335]    [Pg.172]    [Pg.50]   


SEARCH



Amide oxides

Amides oxidation

Oxidative amidation

© 2024 chempedia.info