Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ambient techniques

All depositions of samples for later ambient experiments have been performed at the setup described in detail in Sect. 3.3.1. As mentioned in the introduction (Sect. 1.3) most of the experiments were conducted in a joined approach with a number of different collaboration partners. In the following the different applied techniques are presented, including a brief introduction of the underlying physical principles, the utilized samples (incl. preparation if applicable) and the measurement with experimental details. [Pg.62]


McEwen et al. have utilized another ambient technique called atmospheric pressure solids analysis probe (ASAP) [84,85] and interfaced it with TWIM-MS [86], This source is now available commercially on the Synapt instrument. They have used m/z vi drift time plots to define compound classes in CTude oil analysis and to resolve isobaric compounds. Excellent agreement was demonstrated for drift times obtained from standards run individually and doped into the crude oil mixture. This work demonstrates the utility of mobility experiments to provide a degree of separation and classification in the study of very complex mixtures where chromatographic separation is either not possible or too time consuming. [Pg.225]

Many ambient techniques have been applied to produce mass spectra directly from TLC plates. These techniques are still only generally available in laboratories that use custom-built setups. Most are plasma-based setups that produce ions with no or only slight fragmentation, and are usually dedicated to producing ions directly from solid surfaces. These features point toward the techniques potentially becoming commercially available in the futnre. [Pg.100]

The importance of low pressures has already been stressed as a criterion for surface science studies. However, it is also a limitation because real-world phenomena do not occur in a controlled vacuum. Instead, they occur at atmospheric pressures or higher, often at elevated temperatures, and in conditions of humidity or even contamination. Hence, a major tlmist in surface science has been to modify existmg techniques and equipment to pemiit detailed surface analysis under conditions that are less than ideal. The scamiing tunnelling microscope (STM) is a recent addition to the surface science arsenal and has the capability of providing atomic-scale infomiation at ambient pressures and elevated temperatures. Incredible insight into the nature of surface reactions has been achieved by means of the STM and other in situ teclmiques. [Pg.921]

The implementation of high-pressure reaction cells in conjunction with UFIV surface science techniques allowed the first tme in situ postmortem studies of a heterogeneous catalytic reaction. These cells penult exposure of a sample to ambient pressures without any significant contamination of the UFIV enviromnent. The first such cell was internal to the main vacuum chamber and consisted of a metal bellows attached to a reactor cup [34]- The cup could be translated using a hydraulic piston to envelop the sample, sealing it from... [Pg.938]

To achieve sufficient vapor pressure for El and Cl, a nonvolatile liquid will have to be heated strongly, but this heating may lead to its thermal degradation. If thermal instability is a problem, then inlet/ionization systems need to be considered, since these do not require prevolatilization of the sample before mass spectrometric analysis. This problem has led to the development of inlet/ionization systems that can operate at atmospheric pressure and ambient temperatures. Successive developments have led to the introduction of techniques such as fast-atom bombardment (FAB), fast-ion bombardment (FIB), dynamic FAB, thermospray, plasmaspray, electrospray, and APCI. Only the last two techniques are in common use. Further aspects of liquids in their role as solvents for samples are considered below. [Pg.279]

Phase Separation. Microporous polymer systems consisting of essentially spherical, intercoimected voids, with a narrow range of pore and ceU-size distribution have been produced from a variety of thermoplastic resins by the phase-separation technique (127). If a polyolefin or polystyrene is insoluble in a solvent at low temperature but soluble at high temperatures, the solvent can be used to prepare a microporous polymer. When the solutions, containing 10—70% polymer, are cooled to ambient temperatures, the polymer separates as a second phase. The remaining nonsolvent can then be extracted from the solid material with common organic solvents. These microporous polymers may be useful in microfiltrations or as controlled-release carriers for a variety of chemicals. [Pg.408]

The nature of the intermediates impHcated in the photooxidation of water with Ti02 has been identified in several reports using spin traps by the electron spin resonance (esr) technique under ambient conditions (53). No evidence for OH species, even at 4.2 K, was found (43), but the esr signal... [Pg.404]

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]

The stmctural architecture of siUcone polymers, such as the number of D, T, and Q sites and the number and type of cross-link sites, can be deterrnined by a degradative analysis technique in which the polymer is allowed to react with a large excess of a capping agent, such as hexamethyidisiloxane, in the presence of a suitable equiUbration catalyst (eq. 38). Triflic acid is often used as a catalyst because it promotes the depolymerization process at ambient temperature (444). A related process employs the KOH- or KOC2H -catalyzed reaction of siUcones with excess Si(OC2H )4 (eq. 39) to produce ethoxylated methylsiUcon species, which are quantitatively deterrnined by gc (445). [Pg.59]

Radiometry. Radiometry is the measurement of radiant electromagnetic energy (17,18,134), considered herein to be the direct detection and spectroscopic analysis of ambient thermal emission, as distinguished from techniques in which the sample is actively probed. At any temperature above absolute zero, some molecules are in thermally populated excited levels, and transitions from these to the ground state radiate energy at characteristic frequencies. Erom Wien s displacement law, T = 2898 //m-K, the emission maximum at 300 K is near 10 fim in the mid-ir. This radiation occurs at just the energies of molecular rovibrational transitions, so thermal emission carries much the same information as an ir absorption spectmm. Detection of the emissions of remote thermal sources is the ultimate passive and noninvasive technique, requiring not even an optical probe of the sampled volume. [Pg.315]

Fermentation. The term fermentation arose from the misconception that black tea production is a microbial process (73). The conversion of green leaf to black tea was recognized as an oxidative process initiated by tea—enzyme catalysis circa 1901 (74). The process, which starts at the onset of maceration, is allowed to continue under ambient conditions. Leaf temperature is maintained at less than 25—30°C as lower (15—25°C) temperatures improve flavor (75). Temperature control and air diffusion are faciUtated by distributing macerated leaf in layers 5—8 cm deep on the factory floor, but more often on racked trays in a fermentation room maintained at a high rh and at the lowest feasible temperature. Depending on the nature of the leaf, the maceration techniques, the ambient temperature, and the style of tea desired, the fermentation time can vary from 45 min to 3 h. More highly controlled systems depend on the timed conveyance of macerated leaf on mesh belts for forced-air circulation. If the system is enclosed, humidity and temperature control are improved (76). [Pg.372]


See other pages where Ambient techniques is mentioned: [Pg.98]    [Pg.5]    [Pg.73]    [Pg.3603]    [Pg.62]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.98]    [Pg.5]    [Pg.73]    [Pg.3603]    [Pg.62]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.634]    [Pg.1634]    [Pg.1877]    [Pg.4]    [Pg.191]    [Pg.384]    [Pg.411]    [Pg.395]    [Pg.505]    [Pg.128]    [Pg.386]    [Pg.477]    [Pg.436]    [Pg.228]    [Pg.285]    [Pg.416]    [Pg.423]    [Pg.395]    [Pg.516]    [Pg.383]    [Pg.316]    [Pg.333]    [Pg.503]    [Pg.540]    [Pg.442]    [Pg.385]    [Pg.331]    [Pg.356]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Ambient

Ambient desorption techniques

© 2024 chempedia.info