Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alumina impurities

Endres, R, El Abedin, S.Z., Borissenko, N., Probing lithium and alumina impurities in air- and water stable ionic liquids by cyclic voltammetry and in situ scanning tunneling microscopy, Zeits. Phys. Chem.—Int. ]. Res. Phys. Chem. Chem. Phys., 220, 1377-1394, 2006. [Pg.306]

Figure 5.11. Effect of grinding and subsequent thermal recrystallisation on the MAS NMR spectrum of synthetic crystalline mullite. Note the progressive change of the 47/32 ppm resonance. The small resonance at 13 ppm is from a residual corundum (a-alumina) impurity. After Schmiicker et al. (1998), by permission of the copyright owner. Figure 5.11. Effect of grinding and subsequent thermal recrystallisation on the MAS NMR spectrum of synthetic crystalline mullite. Note the progressive change of the 47/32 ppm resonance. The small resonance at 13 ppm is from a residual corundum (a-alumina) impurity. After Schmiicker et al. (1998), by permission of the copyright owner.
The difference between these results must be ascribed to the difference in composition, since the light sources and conditions of illumination were similar. However, there is no evidence beside that of the catalytic activity to demonstrate any difference between the centers in the two materials. The optical spectra (diffuse reflectance) (68, 88) were closely similar, as expected from the role of alumina impurity in silica gel, and adequate data are not available from ESR for silica-alumina. Only slight differences in absorption spectrum might be necessary the reversal of the effect on activity around 3000 A in silica gel might well be shifted to another wavelength in silica-alumina. [Pg.156]

As noted in the previous section, oxides are generally added as sintering additives for densifying AIN, and will react with any alumina impurity in an AlN powder. After sintering, the secondary phases of aluminate compounds will then remain in the microstructure. The thermal conductivity of the aluminates may be as low as a few W m K, this value being about two orders lower than that of AlN [23]. If the secondary oxide phases are discretely distributed within the AlN matrix, the secondary phase is of minor importance, whereas if the AlN grains are covered with the low-thermal conductivity secondary phase the material s thermal... [Pg.675]

Aluminium oxide occurs naturally as emery (an impure form) and as corundum. Corundum is a crystalline form which may be coloured by traces of impurity, for example as ruby (red) and sapphire (blue). Small synthetic rubies and sapphires have been made by heating alumina with the colouring oxide in an oxy-hydrogen flame. [Pg.150]

Purification of anthracene. Dissolve 0-3 g. of crude anthracene (usually yellowish in colour) in 160-200 ml. of hexane, and pass the solution through a column of activated alumina (1 5-2 X 8-10 cm.). Develop the chromatogram with 100 ml. of hexane. Examine the column in the hght of an ultra-violet lamp. A narrow, deep blue fluorescent zone (due to carbazole, m.p. 238°) will be seen near the top of the column. Immediately below this there is a yellow, non-fluorescent zone, due to naphthacene (m.p. 337°). The anthracene forms a broad, blue-violet fluorescent zone in the lower part of the column. Continue the development with hexane until fluorescent material commences to pass into the filtrate. Reject the first runnings which contain soluble impurities and yield a paraffin-hke substance upon evaporation. Now elute the column with hexane-benzene (1 1) until the yellow zone reaches the bottom region of the column. Upon concentration of the filtrate, pure anthracene, m.p. 215-216°, which is fluorescent in dayhght, is obtained. The experiment may be repeated several times in order to obtain a moderate quantity of material. [Pg.944]

In 1990, appioximately 66,000 metric tons of alumina trihydiate [12252-70-9] AI2O2 3H20, the most widely used flame retardant, was used to inhibit the flammabihty of plastics processed at low temperatures. Alumina trihydrate is manufactured from either bauxite ore or recovered aluminum by either the Bayer or sinter processes (25). In the Bayer process, the bauxite ore is digested in a caustic solution, then filtered to remove siUcate, titanate, and iron impurities. The alumina trihydrate is recovered from the filtered solution by precipitation. In the sinter process the aluminum is leached from the ore using a solution of soda and lime from which pure alumina trihydrate is recovered (see Aluminum compounds). [Pg.458]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Cementstone is an impure (usually argillaceous) limestone, possessing the ideal balance of siUca, alumina, and calcium carbonate for Portiand cement (qv) manufacture. When calcined it produces a hydrauHc cementing material. [Pg.163]

Hydraulic hydrated lime is a chemically impure form of lime with hydraiflic properties of varying extent. It contains appreciable amounts of sflica, alumina, and usually some iron, chemically combined with much of the lime. Hydraiflic hydrated lime is employed solely for stmctural purposes. [Pg.164]

The zinc oxide component of the catalyst serves to maintain the activity and surface area of the copper sites, and additionally helps to reduce light ends by-product formation. Selectivity is better than 99%, with typical impurities being ethers, esters, aldehydes, ketones, higher alcohols, and waxes. The alumina portion of the catalyst primarily serves as a support. [Pg.275]

No cryolite is actually needed once the smelting process is in operation because cryolite is produced in the reduction cells by neutralizing the Na20 brought into the cell as an impurity in the alumina using aluminum fluoride. [Pg.96]

Molten aluminum is removed from the cells by siphoning, generally daily, into a cmcible. Normally the metal is 99.6—99.9% pure. The principal impurities are Ee, Si, Ti, V, and Mn, and come largely from the anode, but also from the alumina. [Pg.98]

Figure 1 shows the decomposition sequence for several hydrous precursors and indicates approximate temperatures at which the activated forms occur (1). As activation temperature is increased, the crystal stmctures become more ordered as can be seen by the x-ray diffraction patterns of Figure 2 (2). The similarity of these patterns combined with subtie effects of precursor crystal size, trace impurities, and details of sample preparation have led to some confusion in the Hterature (3). The crystal stmctures of the activated aluminas have, however, been well-documented by x-ray diffraction (4) and by nmr techniques (5). Figure 1 shows the decomposition sequence for several hydrous precursors and indicates approximate temperatures at which the activated forms occur (1). As activation temperature is increased, the crystal stmctures become more ordered as can be seen by the x-ray diffraction patterns of Figure 2 (2). The similarity of these patterns combined with subtie effects of precursor crystal size, trace impurities, and details of sample preparation have led to some confusion in the Hterature (3). The crystal stmctures of the activated aluminas have, however, been well-documented by x-ray diffraction (4) and by nmr techniques (5).
The term alumina hydrates or hydrated aluminas is used in industry and commerce to designate aluminum hydroxides. These compounds are tme hydroxides and do not contain water of hydration. Several forms are known a general classification is shown in Figure 1. The most weU-defined crystalline forms ate the trihydroxides, Al(OH) gibbsite [14762-49-3], bayerite [20257-20-9], and nordstrandite [13840-05-6], In addition, two aluminum oxide—hydroxides, AIO(OH), boelimite [1318-23-6] and diaspote [14457-84-2], have been clearly defined. The existence of several other forms of aluminum hydroxides have been claimed. However, there is controversy as to whether they ate truly new phases or stmctures having distorted lattices containing adsorbed or intedameUar water and impurities. [Pg.167]

Alumina. A pure although not necessarily a refractory grade of alumina is obtained from bauxite by the Bayer process. In this process, the gibbsite from the bauxite is dissolved in a caustic soda solution and thus separated from the impurities. Alumina, calcined, sintered, or fused, is a stable and extremely versatile material used for a variety of heavy industrial, electronic, and technical appHcations. [Pg.25]

The devitrification rate is extremely sensitive to both surface and bulk impurities, especially alkah. Increased alkah levels tend to increase the devitrification rate and lower the temperature at which the maximum rate occurs. For example, a bulk level of 0.32 wt % soda increases the maximum devitrification rate 20—30 times and lowers the temperature of maximum devitrification to approximately 1400°C (101). The impurity effect is present even at trace levels (<50 ppm) and can be enhanced with the addition of alumina. The devitrification rate varies inversely with the ratio of alumina-to-alkah metal oxide. The effect is a consequence of the fact that these impurities lower glass viscosity (102). [Pg.502]

The second Hquefaction process is carried out at temperatures from 261 to 296 K, with Hquefaction pressures of about 1600—2400 kPa (16—24 atm). The compressed gas is precooled to 277 to 300 K, water and entrained oil are separated, and the gas is then dehydrated ia an activated alumina, bauxite, or siHca gel drier, and flows to a refrigerant-cooled condenser (see Drying agents). The Hquid is then distilled ia a stripper column to remove noncombustible impurities. Liquid carbon dioxide is stored and transported at ambient temperature ia cylinders containing up to 22.7 kg. Larger quantities are stored ia refrigerated iasulated tanks maintained at 255 K and 2070 kPa (20 atm), and transported ia iasulated tank tmcks and tank rail cars. [Pg.23]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]


See other pages where Alumina impurities is mentioned: [Pg.71]    [Pg.174]    [Pg.90]    [Pg.71]    [Pg.174]    [Pg.90]    [Pg.109]    [Pg.908]    [Pg.88]    [Pg.11]    [Pg.11]    [Pg.288]    [Pg.10]    [Pg.446]    [Pg.478]    [Pg.163]    [Pg.171]    [Pg.321]    [Pg.489]    [Pg.440]    [Pg.172]    [Pg.154]    [Pg.155]    [Pg.156]    [Pg.159]    [Pg.171]    [Pg.559]    [Pg.26]    [Pg.213]    [Pg.216]    [Pg.324]    [Pg.465]   
See also in sourсe #XX -- [ Pg.23 , Pg.24 ]




SEARCH



Aluminum alumina impurity

© 2024 chempedia.info