Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic oxidation metallation

In the following scheme, an oxidation pathway for propane and propene is proposed. This mechanism, that could be generalized to different hansition metal oxide catalysts, implies that propene oxidation can follow the allylic oxidation way, or alternatively, the oxidation way at C2, through acetone. The latter easily gives rise to combustion, because it can give rise to enolization and C-C bond oxidative breaking. This is believed to be the main combustion way for propene over some catalysts, while for other catalysts acrolein overoxidation could... [Pg.488]

In 1965, Denney et al. (98) reported the reaction of a number of alkenes with ferf-butyl hydroperoxide (TBHP) and cupric salts of chiral acids. The use of ethyl camphorate copper complex 144 in the allylic oxidation of cyclopentene provides, upon reduction of the camphorate ester, the allylic alcohol in low yield and low selectivity, Eq. 82. The initial publication only provided the observed rotation of cyclopentenol, but comparison to subsequent literature values (99) reveals that this reaction proceeds in 12% ee and 43% yield (based on the metal complex). [Pg.53]

In a related system, Feringa and co-workers (104) noted the beneficial effect of copper bronze in the allylic oxidation reaction. The addition of 5 mol% of this addend provides the cyclohexenyl ester in higher selectivity and yield than in the absence of the metal, while allowing the reaction to proceed at 0°C. The role of copper bronze is presumably to effect reduction of Cu(II) to the catalytically active... [Pg.54]

The application of dinuclear metal catalysts to the Kharasch-Sosnovsky reaction is mechanistically intriguing due to their illustrated role in mediating biological oxidations (119). Fahmi (120) examined a variety of dinucleating ligands with Cu(MeCN)4PF6 as catalysts in the allylic oxidation of cyclohexene, Eq. 102. In these studies, early results have been inferior to those obtained from bis(oxa-zoline)-copper catalysts. [Pg.64]

To circumvent some of the above-mentioned drawbacks of sulfur-based mercury chemodosimeters, a system based on the alkyne oxymercuration of 58 has been developed (Fig. 22) [146]. 58 shows high selectivity, a limit of detection of ca. 8 ppm, resistance against strong oxidants, and a positive reaction even in the presence of cysteine, which is known to form stable mercury complexes and is used for the extraction of mercury from tissue samples. Another metal that is well-known for its catalytic ability is palladium, catalyzing different reactions depending on its oxidation state. Since this metal is toxic, assessment of the maximum allowable concentration of Pd in consumer products such as pharmaceuticals requires highly sensitive and selective detection schemes. For this purpose, indicator 60 was conceived to undergo allylic oxidative insertion to the fluorescein... [Pg.69]

SCHEME 125. Metal-catalyzed allylic oxidation of steroids with THBP... [Pg.503]

During the history of a half century from the first discovery of the reaction (/) and 35 years after the industrialization (2-4), these catalytic reactions, so-called allylic oxidations of lower olefins (Table I), have been improved year by year. Drastic changes have been introduced to the catalyst composition and preparation as well as to the reaction process. As a result, the total yield of acrylic acid from propylene reaches more than 90% under industrial conditions and the single pass yield of acrylonitrile also exceeds 80% in the commercial plants. The practical catalysts employed in the commercial plants consist of complicated multicomponent metal oxide systems including bismuth molybdate or iron antimonate as the main component. These modern catalyst systems show much higher activity and selectivity... [Pg.233]

The oxidation of propene to acrolein has received much attention for several reasons. Firstly, the process is of industrial importance in itself, and it is also a suitable model reaction for the even more important, but at the same time more complicated, ammoxidation. Secondly, propene oxidation is, in many aspects, representative of that of a class of olefins which possesses allylic methyl groups. Last, but not least, the allylic oxidation is a very successful example of selective catalysis, for which several effective metal oxide systems have been discovered. The subject has therefore attracted much interest from the fundamental point of view. [Pg.137]

The allylic oxidation of propene is catalyzed by (compound) metal oxides, which essentially contain metal ions of variable valency. It is commonly accepted that a redox mechanism is operative in such a way that the catalyst acts as the oxidizer and that lattice oxygen is incorporated in the oxidation products. The assumptions have been proved for several catalysts by the analysis of cation valency changes and by experiments with labelled oxygen. [Pg.137]

Simple Fe3+ salts have rarely been used for catalytic allylic oxidations. Covalent metal nitrates are well known to be strong oxidants which undergo dissociation of the bidentate metal nitrate bond resulting in the formation of the N03 radical as reactive species [105], However, Sahle-Demessie and coworkers were the first who showed the utility of even commercially available Fe(N03)3-9H20 as an oxidation catalyst [106], Turnover and chemoselectivity turned out to be strongly dependent on the alkene substrate and the partial pressure (Scheme 3.20). [Pg.93]

In comparison with metal porphyrins, the corresponding metal phthalocyanines are much more stable against oxidative decomposition. Murahashi et al. reported that chlorinated Fe(II) phthalocyanine is particularly well suited for aerobic allylic oxidation employing acetic aldehyde as a cofactor (Scheme 3.27) [118]. Under these conditions, cyclohexene la is converted to a mixture of 2a and 3a in 70% overall yield and the epoxide 4a as byproduct (30%). Acetic aldehyde is proposed to autoxidize by... [Pg.98]

The cyclohexene 121, which was readily accessible from the Diels-Alder reaction of methyl hexa-3,5-dienoate and 3,4-methylenedioxy-(3-nitrostyrene (108), served as the starting point for another formal total synthesis of ( )-lycorine (1) (Scheme 11) (113). In the event dissolving metal reduction of 121 with zinc followed by reduction of the intermediate cyclic hydroxamic acid with lithium diethoxyaluminum hydride provided the secondary amine 122. Transformation of 122 to the tetracyclic lactam 123 was achieved by sequential treatment with ethyl chloroformate and Bischler-Napieralski cyclization of the resulting carbamate with phosphorus oxychloride. Since attempts to effect cleanly the direct allylic oxidation of 123 to provide an intermediate suitable for subsequent elaboration to ( )-lycorine (1) were unsuccessful, a stepwise protocol was devised. Namely, addition of phenylselenyl bromide to 123 in acetic acid followed by hydrolysis of the intermediate acetates gave a mixture of two hydroxy se-lenides. Oxidative elimination of phenylselenous acid from the minor product afforded the allylic alcohol 124, whereas the major hydroxy selenide was resistant to oxidation and elimination. When 124 was treated with a small amount of acetic anhydride and sulfuric acid in acetic acid, the main product was the rearranged acetate 67, which had been previously converted to ( )-lycorine (108). [Pg.279]

A mild triple catalytic system consisting of Pd(OAc)2, hydroquinone, and a transition metal macrocycle (for example, iron phthalocyanine) was reported [243]. The catalytic effect is carried out by the interaction of Pd(II) with the substrate and the acquisition of two electrons, which are further transferred to the benzoquinone that is reduced to hydroquinone. The hydroquinone is then reorganized to benzoquinone by the 02/metal macrocycle system. The following types of transformations were carried out in mild conditions using the developed system 1,4-oxidation of conjugated dienes, oxidation of terminal olefins to methyl ketones, and allylic oxidation. [Pg.427]


See other pages where Allylic oxidation metallation is mentioned: [Pg.204]    [Pg.221]    [Pg.329]    [Pg.194]    [Pg.442]    [Pg.1063]    [Pg.1116]    [Pg.1116]    [Pg.366]    [Pg.647]    [Pg.227]    [Pg.161]    [Pg.293]    [Pg.803]    [Pg.154]    [Pg.516]    [Pg.10]    [Pg.516]    [Pg.455]    [Pg.814]    [Pg.238]    [Pg.124]    [Pg.136]    [Pg.354]    [Pg.200]    [Pg.207]    [Pg.648]    [Pg.217]    [Pg.251]    [Pg.445]   
See also in sourсe #XX -- [ Pg.7 , Pg.99 ]

See also in sourсe #XX -- [ Pg.7 , Pg.99 ]

See also in sourсe #XX -- [ Pg.99 ]




SEARCH



1.1- allyl metals

Allyl oxide

Allylic metalation

Allylic oxidation

Metal acetates allylic oxidation

Metal-substituted Molecular Sieves as Catalysts for Allylic and Benzylic Oxidations

© 2024 chempedia.info