Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic halides carboxylic acids

The dianions derived from furan- and thiophene-carboxylic acids by deprotonation with LDA have been reacted with various electrophiles (Scheme 64). The oxygen dianions reacted efficiently with aldehydes and ketones but not so efficiently with alkyl halides or epoxides. The sulfur dianions reacted with allyl bromide, a reaction which failed in the case of the dianions derived from furancarboxylic acids, and are therefore judged to be the softer nucleophiles (81JCS(Pl)1125,80TL505l). [Pg.72]

Differences in solubility of the reactants may for example be utilized as follows. Sodium iodide is much more soluble in acetone than are sodium chloride or sodium bromide. Upon treatment of an alkyl chloride or bromide with sodium iodide in acetone, the newly formed sodium chloride or bromide precipitates from the solution and is thus removed from equilibrium. Alkyl iodides can be conveniently prepared in good yields by this route. Alkyl bromides are more reactive as the corresponding chlorides. Of high reactivity are a-halogen ketones, a-halogen carboxylic acids and their derivatives, as well as allyl and benzyl halides. [Pg.113]

Carboxylic acids can be alkylated in the a position by conversion of their salts to dianions [which actually have the enolate structures RCH=C(0")2 ] by treatment with a strong base such as LDA. The use of Li as the counterion is important, because it increases the solubility of the dianionic salt. The reaction has been applied to primary alkyl, allylic, and benzylic halides, and to carboxylic acids of the form RCH2COOH and RR"CHCOOH. This method, which is an example of the alkylation of a dianion at its more nucleophilic position (see p. 458),... [Pg.555]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Method A The finely powdered potassium salt of the carboxylic acid (11 mmol) is added to the alkylating agent [ 11 mmol for RX 5.5 mmol for X(CH2) X, 20 mmol with allylic and benzylic halides] and Aliquat or TBA-Br (0.1 mmol). The mixture is shaken vigorously for 15 min and then allowed to stand (see Table 3.9). The mixture is diluted with Et20 (60 ml), filtered through Florisil, and evaporated to yield the ester. [Pg.89]

Seebach and Naef1961 generated chiral enolates with asymmetric induction from a-heterosubstituted carboxylic acids. Reactions of these enolates with alkyl halides were found to be highly diastereoselective. Thus, the overall enantioselective a-alkyla-tion of chiral, non-racemic a-heterosubstituted carboxylic acids was realized. No external chiral auxiliary was necessary in order to produce the a-alkylated target molecules. Thus, (S)-proline was refluxed in a pentane solution of pivalaldehyde in the presence of an acid catalyst, with azeotropic removal of water. (197) was isolated as a single diastereomer by distillation. The enolate generated from (197) was allylated and produced (198) with ad.s. value >98 %. The substitution (197) ->(198) probably takes place with retention of configuration 196>. [Pg.220]

SCHEME 38. Threo/erythro diastereoselectivity in the photooxygenation of allylic halides, sulphones, carboxylic acids and esters... [Pg.867]

Sodium salts of carboxylic acids, including hindered acids such as mesitoic, rapidly react with primary and secondary bromides and iodides at room temperature in dipolar aprotic solvents, especially HMPA, to give high yields of carboxylic esters.679 The mechanism is Sn2. Another method uses phase transfer catalysis.680 With this method good yields of esters have been obtained from primary, secondary, benzylic, allylic, and phenacyl halides.681 In another procedure, which is applicable to long-chain primary halides, the dry carboxylate salt and the halide, impregnated on alumina as a solid support, are subjected to irradiation by microwaves in a commercial microwave oven.682 In still another method, carboxylic acids... [Pg.398]

Michael addition reactions, 4, 302 reactions with allyl halides, 4, 301 Pyrrole-2-carboxylic acid, 1-methyl-conformation, 4, 194 esters... [Pg.818]

The at complex from DIB AH and butyllithium is a selective reducing agent.16 It is used tor the 1,2-reduction of acyclic and cyclic enones. Esters and lactones are reduced at room temperature to alcohols, and at -78 C to alcohols and aldehydes. Acid chlorides are rapidly reduced with excess reagent at -78 C to alcohols, but a mixture of alcohols, aldehydes, and acid chlorides results from use of an equimolar amount of reagent at -78 C. Acid anhydrides are reduced at -78 C to alcohols and carboxylic acids. Carboxylic acids and both primary and secondary amides are inert at room temperature, whereas tertiary amides (as in the present case) are reduced between 0 C and room temperature to aldehydes. The at complex rapidly reduces primary alkyl, benzylic, and allylic bromides, while tertiary alkyl and aryl halides are inert. Epoxides are reduced exclusively to the more highly substituted alcohols. Disulfides lead to thiols, but both sulfoxides and sulfones are inert. Moreover, this at complex from DIBAH and butyllithium is able to reduce ketones selectively in the presence of esters. [Pg.170]

Benzylic and allylic positions are hydroxylated by CPO in halide-dependent catalytic transformations. Toluene and p-xylene are oxidized to the respective aldehydes and carboxylic acids [247, 248]. Ethylbenzene and other substrates with longer alkyl chains form the respective benzylic/allylic alcohols with high enantio-selectivity. Straight-chain aliphatic and cyclic (Z)-alkenes are hydroxylated, favoring small unsubstituted substrates in which the double bond is not more than two carbon atoms from the terminus. Steric control is observed for benzylic hydroxylations. [Pg.59]


See other pages where Allylic halides carboxylic acids is mentioned: [Pg.224]    [Pg.156]    [Pg.138]    [Pg.488]    [Pg.562]    [Pg.422]    [Pg.237]    [Pg.473]    [Pg.193]    [Pg.50]    [Pg.75]    [Pg.50]    [Pg.280]    [Pg.867]    [Pg.236]    [Pg.867]    [Pg.482]    [Pg.304]    [Pg.403]    [Pg.599]    [Pg.754]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



Acid halides

Acidic halides

Allyl carboxylates

Allyl halides

Allylic carboxylation

Allylic halides

Carboxylates, allylation

Carboxylic acid halides

Carboxylic acids acid halides

Carboxylic acids reaction with allylic halides

Carboxylic halides 229

Halides allylation

Halides carboxylation

Halides carboxylic acid halide

© 2024 chempedia.info