Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl ethers, substitution

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

Ti(0-/-Pr)4, i-BuMgCl, THF, rt, 69-97% yield. Methallyl and other substituted allyl ethers are not cleaved, but ester groups are partially removed, as expected. ... [Pg.71]

DIBAL, NiCl2(dppp), toluene, CH2CI2, THF, or ether, 80-97% yield. These conditions are chemoselective for simple alkyl and phenolic allyl ethers. More highly substituted allyl ethers are unreactive. [Pg.72]

Nucleophilic substitution has been used for the preparation of many thiophenes. For instance, 2-phenylthio-3,4-dinitro-5-piperidino-thiophene (155) has been prepared " through stepwise reaction of (150) with different nucleophiles. Nitrothienols and derivatives of them have been obtained from halogenated nitrothiophenes. " Allyl ethers have been prepared by the reaction of 5-chJoro-4-nitro-2-acetylthiophene, 3-nitro-2-chlorothiophene, and 2-nitro-3-bromothio-... [Pg.71]

Oxidation, allylic, 56,25 of alcohols, 55, 84 58,122 Oxime ( -allyl ethers, 58,10 S y-(2-Oxobut-3-yl)butanethioate, 55, 129 4-Oxocarboxylic acid esters, 58, 81 S-substituted, 58, 82... [Pg.120]

The weaker Lewis add TMSOTf 20 as catalyst gives, after 2 h at 0°C in CH2CI2, a 20 80 mixture of 805 and 806 in only 23% yield (Scheme 6.8). But this yield will probably increase either on longer reaction time at 0°C or on shorter reaction time at 25 °C On replacing one of the methyl groups in 804 by an acetylene substituent the resulting enyne adds allyltrimethylsilane 82 or anisole in the presence of TMSOTf 20 to give allenes [18]. Substituted allyltrimethylsilanes such as 808 react with the allylic silylether 807 after 70 h at 25 °C in 62% yield to a 41 59 mixture of 809 and 810 as well as 7 [17]. Closely related additions of 82 to allylic ethers or O-acetates are discussed in Refs. 17a-c. [Pg.139]

Intermolecular hydroalkoxylation of 1,1- and 1,3-di-substituted, tri-substituted and tetra-substituted allenes with a range of primary and secondary alcohols, methanol, phenol and propionic acid was catalysed by the system [AuCl(IPr)]/ AgOTf (1 1, 5 mol% each component) at room temperature in toluene, giving excellent conversions to the allylic ethers. Hydroalkoxylation of monosubstituted or trisubstituted allenes led to the selective addition of the alcohol to the less hindered allene terminus and the formation of allylic ethers. A plausible mechanism involves the reaction of the in situ formed cationic (IPr)Au" with the substituted allene to form the tt-allenyl complex 105, which after nucleophilic attack of the alcohol gives the o-alkenyl complex 106, which, in turn, is converted to the product by protonolysis and concomitant regeneration of the cationic active species (IPr)-Au" (Scheme 2.18) [86]. [Pg.46]

The scope of this methodology was extended to the enantioselective rearrangement of difluorovinyl allyl ethers by these authors, furnishing a novel powerful tool for the synthesis of chiral p-substituted a,a -difluorocarbonyl compounds. As shown in Scheme 10.36, moderate to good enantioselectivities... [Pg.324]

Zr-Catalyzed Kinetic Resolution of Allylic Ethers and Ru- and Mo-Catalyzed Synthesis of 2-Substituted Chromenes... [Pg.123]

Catalytic RCM and another Zr-catalyzed process, the kinetic resolution of cyclic allylic ethers, joined forces in our laboratories in 1995 to constitute a fully-cata-lytic two-step synthesis of optically pure 2-substituted chromenes. These structural units comprise a critical component of a range of medicinally important agents (see below). Our studies arose from unsuccessful attempts to effect the catalytic kinetic resolution of the corresponding chromenes [13] a representative example is illustrated in Eq. 3. [Pg.123]

The synthetic versatility and significance of the Zr-catalyzed kinetic resolution of exocyc-lic allylic ethers is demonstrated by the example provided in Scheme 6.9. The optically pure starting allylic ether, obtained by the aforementioned catalytic kinetic resolution, undergoes a facile Ru-catalyzed rearrangement to afford the desired chromene in >99% ee [20], Unlike the unsaturated pyrans discussed above, chiral 2-substituted chromenes are not readily resolved by the Zr-catalyzed protocol. Optically pure styrenyl ethers, such as that shown in Scheme 6.9, are obtained by means of the Zr-catalyzed kinetic resolution, allowing for the efficient and enantioselective preparation of these important chromene heterocycles by a sequential catalytic protocol. [Pg.192]

A wide range of carbon, nitrogen, and oxygen nucleophiles react with allylic esters in the presence of iridium catalysts to form branched allylic substitution products. The bulk of the recent literature on iridium-catalyzed allylic substitution has focused on catalysts derived from [Ir(COD)Cl]2 and phosphoramidite ligands. These complexes catalyze the formation of enantiomerically enriched allylic amines, allylic ethers, and (3-branched y-8 unsaturated carbonyl compounds. The latest generation and most commonly used of these catalysts (Scheme 1) consists of a cyclometalated iridium-phosphoramidite core chelated by 1,5-cyclooctadiene. A fifth coordination site is occupied in catalyst precursors by an additional -phosphoramidite or ethylene. The phosphoramidite that is used to generate the metalacyclic core typically contains one BlNOLate and one bis-arylethylamino group on phosphorus. [Pg.170]

Transition metal-catalyzed allylic substitution with phenols and alcohols represents a fundamentally important cross-coupling reaction for the construction of allylic ethers, which are ubiquitous in a variety of biologically important molecules [44, 45]. While phenols have proven efficient nucleophiles for a variety of intermolecular allylic etherification reactions, alcohols have proven much more challenging nucleophiles, primarily due to their hard, more basic character. This is exemphfied with secondary and tertiary alcohols, and has undoubtedly limited the synthetic utihty of this transformation. [Pg.205]

Tab. 10.7 summarizes the results of the application of rhodium-catalyzed allylic etherification to a series of ortho-substituted phenols. The etherification tolerates alkyls, including branched alkanes (entries 1 and 2), aryl substituents (entry 3), heteroatoms (entries 4 and 5), and halogens (entry 6). These results prompted the examination of ortho-disubstituted phenols, which were expected to be more challenging substrates for this type of reaction. Remarkably, the ortho-disubstituted phenols furnished the secondary aryl allyl ethers with similar selectivity (entries 7-12). The ability to employ halogen-bearing ortho-disubstituted phenols should facilitate substitutions that would have proven extremely challenging with conventional cross-coupling protocols. [Pg.205]

Tab. 10.8 summarizes the application of rhodium-catalyzed allylic etherification to a variety of racemic secondary allylic carbonates, using the copper(I) alkoxide derived from 2,4-dimethyl-3-pentanol vide intro). Although the allyhc etherification is tolerant of linear alkyl substituents (entries 1-4), branched derivatives proved more challenging in terms of selectivity and turnover, the y-position being the first point at which branching does not appear to interfere with the substitution (entry 5). The allylic etherification also proved feasible for hydroxymethyl, alkene, and aryl substituents, albeit with lower selectivity (entries 6-9). This transformation is remarkably tolerant, given that the classical alkylation of a hindered metal alkoxide with a secondary alkyl halide would undoubtedly lead to elimination. Hence, regioselective rhodium-catalyzed allylic etherification with a secondary copper(l) alkoxide provides an important method for the synthesis of allylic ethers. [Pg.207]

A simple synthesis of 3-substituted and 23-disubstituted 4-chloiofuians was accomplished. It involves a CuCl/bipy-catalyzed regioselective cyclization of l-acetoxy-2.22-trichloroethyl allyl ether followed successively by dechloroacetoxylation with Zn dust and tandem dehydro-halogenation-aromatization with tBuOK/18-crown-6 <99CC2267>. [Pg.144]

Oxygen-Substituted Ally lie Organometallic Compouuds From Allyl Ethers... [Pg.680]


See other pages where Allyl ethers, substitution is mentioned: [Pg.878]    [Pg.290]    [Pg.139]    [Pg.159]    [Pg.22]    [Pg.199]    [Pg.322]    [Pg.1079]    [Pg.225]    [Pg.226]    [Pg.237]    [Pg.273]    [Pg.412]    [Pg.39]    [Pg.69]    [Pg.1062]    [Pg.411]    [Pg.194]    [Pg.491]    [Pg.513]    [Pg.526]    [Pg.850]    [Pg.1225]    [Pg.205]    [Pg.32]    [Pg.800]    [Pg.220]    [Pg.387]    [Pg.156]    [Pg.226]    [Pg.394]   
See also in sourсe #XX -- [ Pg.557 ]




SEARCH



2-Alkoxycarbonyl-substituted allyl vinyl ethers

Allyl ethers

Allylic substitution

Electrophilic substitutions allylic ethers

Ethers, substituted

© 2024 chempedia.info