Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allenylidene complexes reactivity

Abstract Allenylidene complexes have gained considerable significance in the context of transition-metal carbene chemistry due to their potential applications in organic synthesis. The aim of this chapter is to draw together a general presentation of the most efficient synthetic routes, the main structural features and reactivity patterns, as well as current applications in homogeneous catalysis, of aU-carbon-substituted allenylidenes and related cumulenylidene complexes containing an odd number of carbon atoms. [Pg.151]

Cp=Cy bond of indenyl-allenylidene complexes 30 which leads to the stereoselective formation of cationic amino-allenylidenes 31. When R = Ph, complexes 31 can be transformed into the secondary derivatives 32 via treatment with LiBHEts and subsequent purification on sUica-gel column. Further insertions of MeC=CNEt2 into 32 allow the preparation of polyunsaturated cumulene chains (related insertion reactions will be discussed in the reactivity section). [Pg.164]

The regioselectivity of the nucleophilic additions on allenylidene complexes (C vs Cy) is subtly controlled by the electronic and steric properties both of the substituents on the unsaturated hydrocarbon chain and the ancillary ligands on the metal atom, as well as by the nucleophile employed. In this section we will summarize the nucleophilic reactivity of mononuclear Group 6-9 allenylidenes. [Pg.176]

As already commented in the introduction of this chapter, regardless of its substitution pattern, the main trends of allenylidene reactivity are governed by the electron deficient character of the C and Cy carbon atoms of the cumulenic chain, the Cp being a nucleophilic center [9-15]. Thus, as occurs with their allcarbon substituted counterparts, electrophilic additions on 7i-donor-substituted allenylidene complexes are expected to take place selectively at Cp, while nucleophiles can add to both C and Cy atoms. However, the extensive 71-conjugation present in these molecules results in a reduced reactivity of the cumulenic chain and, in some cases, in marked differences in the regioselectivity of the nucleophilic additions when compared to the all-carbon substituted allenylidenes. In the following subsections updated reactivity studies on 7i-donor-substituted allenylidene complexes are presented by Periodic Group. [Pg.234]

Scheme 13 Reactivity of chromium allenylidene complexes 5 towards amines... Scheme 13 Reactivity of chromium allenylidene complexes 5 towards amines...
Preparation and Stoichiometric Reactivity of Metal Allenylidene Complexes... [Pg.61]

Only a few cyclization processes of this type have been described up to now. Most of them result from inter- or intramolecular attacks of anionic nucleophiles containing at least two reactive heteroatoms. Thus, sodium dimethyldithiocarbamate reacts with the cationic allenylidene complex [RuTp(=C=C=CPh2)(PPh3)2][PF6] (32) to generate the allenyl-metallacycle 33 (Scheme 2.12), as the result of the nucleophilic addition of one of the sulfur atoms at the carbon and subsequent coordination of the second... [Pg.81]

This chapter is intended to highlight the most important developments on the synthesis and reactivity of allenylidene complexes excluding catalytic processes. [Pg.90]

The metal-ligand fragment L M, the number of carbon atoms x, and the substituents at the terminal sp -carbon may vary considerably and, correspondingly, the properties and reactivities. The early members of the series of cumulenylidene complexes (x=l, 2, 3 carbene, vinylidene and allenylidene complexes) have established themselves as invaluable building blocks in stoichiometric synthesis and as highly potent catalyst precursors. The higher members might potentially be very useful candidates for application as one-dimensional wires and in opto-electronic devices. [Pg.99]

The number of known, isolated and characterized complexes depends strongly on the length of the chain and drastically decreases with the number of carbon atoms in the chain. A great number of vinylidene complexes of many metals, with different terminal substituents R and various co-ligands have been synthesized and the reactivity has been studied extensively. At present, the solid-state structure of more than 230 vinylidene complexes has been determined by X-ray structure analyses. The number of isolated allenylidene complexes is somewhat smaller. [Pg.99]

Experimental information on the reactivity of pentatetraenylidene complexes is still rather rare. The isolated pentatetraenylidene complexes [Cl (dppe)2Ru=C=C=C=C=CPh2]+ (20) [7] and [(CO)5M=C=C=C=C=C(NMe2)2] (M = Cr, W) (22) [8] tvere found to read with secondary amines by addition of the amine across the C3=C4 bond, very likely via an initial nucleophilic attack at C3, to give alkenyl(amino)allenylidene complexes (Scheme 3.32). Analogously, methanol... [Pg.120]

Species (A) and (B) constitute the main class of unsaturated carbenes and play important roles as reactive intermediates due to the very electron-deficient carbon Cl [1]. Once they are coordinated with an electron-rich transition metal, metal vinylidene (C) and allenylidene (D) complexes are formed (Scheme 4.1). Since the first example of mononuclear vinylidene complexes was reported by King and Saran in 1972 [2] and isolated and structurally characterized by Ibers and Kirchner in 1974 [3], transition metal vinylidene and allenylidene complexes have attracted considerable interest because of their role in carbon-heteroatom and carbon-carbon bond-forming reactions as well as alkene and enyne metathesis [4]. Over the last three decades, many reviews [4—18] have been contributed on various aspects of the chemistry of metal vinylidene and allenylidene complexes. A number of theoretical studies have also been carried out [19-43]. However, a review of the theoretical aspects of the metal vinylidene and allenylidene complexes is very limited [44]. This chapter will cover theoretical aspects of metal vinylidene and allenylidene complexes. The following aspects vdll be reviewed ... [Pg.129]

In this chapter, we first analyzed the electronic structures of metal vinylidene and allenylidene complexes. The electronic structures allow us to understand the reactivities of these complexes. For metal vinylidene complexes of the Fischer-type, nucleophilic attack usually occurs at the a-carbon and electrophilic attack at the P-carbon. For the corresponding metal allenylidenes, electrophilic attack occurs at the P-carbon and/or the metal center. Then we briefly reviewed the theoretical study of the barriers ofrotation ofvinylidene ligands in various flve-coordinate complexes M (X) C1(=C=CHR)L2 (M = Os, Ru L = phosphine). The study showed that 7t-acceptor ligands (X), electron-withdrawing substituents and lighter metals gave smaller barriers. [Pg.152]

In this chapter, we summarized the theoretical studies carried out on metal vinylidene complexes. Special emphasis was placed on aspects of their electronic structures, reactivities and their roles in organic reactions. Theoretical studies on the related metal allenylidene complexes have been quite limited. More theoretical studies on various aspects of these complexes, particularly on their metathesis reactivities, are clearly necessary. [Pg.153]

Metal allenylidene complexes (M=C=C=CR2) are organometallic species having a double bond betv een a metal and a carbon, such as metal carbenes (M=CR2), metal vinylidenes (M=C=CR2), and other metal cumulenylidenes like M=C=C= C=CR2 [1]. These metal-carbon double bonds are reactive enough to be employed for many organic transformations, both catalytically and stoichiometrically [1, 2]. Especially, the metathesis of alkenes via metal carbenes may be one ofthe most useful reactions in the field of recent organic synthesis [3], vhile metal vinylidenes are also revealed to be the important species in many organic syntheses such as alkyne polymerization and cycloaromatization [4, 5]. [Pg.217]


See other pages where Allenylidene complexes reactivity is mentioned: [Pg.204]    [Pg.34]    [Pg.151]    [Pg.153]    [Pg.159]    [Pg.165]    [Pg.173]    [Pg.173]    [Pg.186]    [Pg.219]    [Pg.222]    [Pg.231]    [Pg.234]    [Pg.234]    [Pg.249]    [Pg.61]    [Pg.79]    [Pg.85]    [Pg.91]    [Pg.91]    [Pg.217]   
See also in sourсe #XX -- [ Pg.173 , Pg.234 ]

See also in sourсe #XX -- [ Pg.173 , Pg.234 ]




SEARCH



Allenylidene

Allenylidene complexes

Allenylidene reactivity

Allenylidenes

Allenylidenes complexes

Complex Reactive

© 2024 chempedia.info