Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions with allenic compounds

Allenic compounds, reactions with two-coordinate phosphines, 77-79... [Pg.277]

Hydroxy(tosyloxy)iodo]benzene and Its Analogues Reactionswith Alkenes and Allenes. Reactions with Alkynes and Alcohols. Reactions with Keto Compounds. Reactions with Nitrogen, Sulfur, and Other compounds. [Pg.225]

Allenes Carbonyl compounds are converted to allenes on reaction with alkenyltitanocenes (16 examples, 40-89%). [Pg.4]

Like butadiene, allene undergoes dimerization and addition of nucleophiles to give 1-substituted 3-methyl-2-methylene-3-butenyl compounds. Dimerization-hydration of allene is catalyzed by Pd(0) in the presence of CO2 to give 3-methyl-2-methylene-3-buten-l-ol (1). An addition reaction with. MleOH proceeds without CO2 to give 2-methyl-4-methoxy-3-inethylene-1-butene (2)[1]. Similarly, piperidine reacts with allene to give the dimeric amine 3, and the reaction of malonate affords 4 in good yields. Pd(0) coordinated by maleic anhydride (MA) IS used as a catalyst[2]. [Pg.450]

Carbon dioxide instead of aldehydes can be involved in Ni(0)-promoted reductive coupling reactions (Equations (76) and (77) Scheme 90).434,434a 434c A stoichiometric amount of Ni(COD)2/DBU reacts with C02 and dienes, alkynes, or allenes to afford a metallacycle intermediate. This metallacycle reacts with organozinc compounds or aldehydes in one-pot to give carboxylic acid derivatives. As shown in Scheme 90, double carboxylation occurs in the presence of dimethylzinc, where the stereochemical outcome is opposite to that of the reaction with diphenylzinc. [Pg.459]

Organogermanium compounds can be prepared by transmetallation reactions with tin reagents. Examples include Me2PhGeCl (Equation (66)),89 the alkene-functionalized species 26-28, (Equations (67) and (68)),90 and the allenic (Equation (69)) and propargylic (Equation (70)) species 29 and 30.91 A series of aryltrichlorogermanes was prepared from the corresponding tin reagents (Equation (71), Table 9).92 Transmetallation with zirconium species can also be used (Equation (72), Table 10).93... [Pg.717]

The use of organotitanium compounds in the synthesis of allenes involves mainly Wittig-type olefmation reactions of carbonyl compounds [86] with titanium ylides. The formation of allenes according to the scheme Q + Q + Q was described by... [Pg.79]

Propargylic substitution reaction is one of the most important routes to allenic compounds [1, 2], As shown in Scheme 3.1, replacement of a leaving group at the propargylic position with an incoming nucleophile via an SN2 pathway rearranges the C=C-C skeleton into a C=C=C moiety to give a propadienyl species. With certain... [Pg.93]

Acylzirconocene chlorides 78, which are easily available through the hydrozirco-nation of alkenes or alkynes with Cp2Zr(H)Cl and subsequent CO insertion, can be used as acyl anion equivalents Cu(I)-catalyzed reactions with propargyl compounds 77 afford allenyl ketones 79 (Scheme 3.40) [86]. The use of an excess of 77 (2 equiv. to 78) is important for the selective preparation of 79, which prevents an undesirable side reaction of the allenic products 79 with 78. [Pg.110]

The rhodium(II)-catalyzed reaction of propargyl compounds 169 and diazo compounds 170 gave corresponding functionalized allenes 171 together with cydopro-penes 172 (Scheme 3.87) [126]. Rh2(pfb)4, where pfb represents perfluorobutyrate, was found to be an excellent catalyst for preparing the allenes 171. An analogous rhodium(II) complex, Rh2(OAc)4, afforded mainly 172 with only a trace amount of 171 (<5%). [Pg.131]

Reaction with a first aldehyde transforms 176 into the vinylphosphonium chloride 177, which for practical reasons is subjected to an anion-exchange process, leading to the phosphonium salt 178. From this, phenyllithium treatment liberates the allenic phosphorane 179, an intermediate that has previously been used to prepare allenes from aldehydes [69], in the present case providing the products 180. The same protocol has also been applied to o-alkynylbenzaldehydes to yield allenes of interest as model compounds for the study of Schmittel and Myers-type cyclization reactions [70]. [Pg.207]

Intermediates such as 224 resulting from the nudeophilic addition of C,H-acidic compounds to allenyl ketones such as 222 do not only yield simple addition products such as 225 by proton transfer (Scheme 7.34) [259]. If the C,H-acidic compound contains at least one carbonyl group, a ring dosure is also possible to give pyran derivatives such as 226. The reaction of a similar allenyl ketone with dimethyl mal-onate, methyl acetoacetate or methyl cyanoacetate leads to a-pyrones by an analogous route however, the yields are low (20-32%) [260], The formation of oxaphos-pholenes 229 from ketones 227 and trivalent phosphorus compounds 228 can similarly be explained by nucleophilic attack at the central carbon atom of the allene followed by a second attack of the oxygen atom of the ketone at the phosphorus atom [261, 262], Treatment of the allenic ester 230 with copper(I) chloride and tributyltin hydride in N-methylpyrrolidone (NMP) affords the cephalosporin derivative 232 [263], The authors postulated a Michael addition of copper(I) hydride to the electron-... [Pg.389]

Cycloadditions and cyclization reactions are among the most important synthetic applications of donor-substituted allenes, since they result in the formation of a variety of carbocyclic and heterocyclic compounds. Early investigations of Diels-Alder reactions with alkoxyallenes demonstrated that harsh reaction conditions, e.g. high pressure, high temperature or Lewis acid promotion, are often required to afford the corresponding heterocycles in only poor to moderate yield [12b, 92-94]. Although a,/3-unsaturated carbonyl compounds have not been used extensively as heterodienes, considerable success has been achieved with activated enone 146 (Eq. 8.27) or with the electron-deficient tosylimine 148 (Eq. 8.28). Both dienes reacted under... [Pg.449]

The examples illustrated in the almost 100 schemes in this chapter demonstrate how versatile donor-substituted allenes can be in synthetic processes. The major applications concern addition reactions and cycloadditions to the allenic double bonds, which furnish products with valuable functional groups. Of particular interest are metalations - usually at C-l of the allene unit - followed by reactions with electrophiles that deliver compounds which can often be used for cyclization reactions. A variety of highly substituted and functionalized heterocycles arises from these flexible methods, which cannot be obtained by other reactions. Many of these transformations proceed with good regioselectivity and excellent stereoselection. [Pg.485]


See other pages where Reactions with allenic compounds is mentioned: [Pg.152]    [Pg.81]    [Pg.64]    [Pg.9]    [Pg.47]    [Pg.462]    [Pg.539]    [Pg.107]    [Pg.175]    [Pg.254]    [Pg.491]    [Pg.260]    [Pg.261]    [Pg.324]    [Pg.55]    [Pg.65]    [Pg.96]    [Pg.315]    [Pg.377]    [Pg.412]    [Pg.439]    [Pg.472]    [Pg.521]   


SEARCH



Allene reaction

Allene reaction with

Allenes compounds

Allenes reactions

Allenic compounds

Reaction with allenes

© 2024 chempedia.info