Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne efficiency

Okuma K, Seto J, Sakaguchi K, Ozaki S, Nagahora N, Shioji K (2009) Palladium-free zinc-mediated hydroamination of alkynes efficient synthesis of indoles from 2-akynylaniline daivatives. Tetrahedron Lett 50 2943-2945. doi 10.1016/j.tetlet.2009.03.210 Okumura K, Shigemitsu K (1965) 2-Hydroxy-l,2,3,3a,4,5-hexahydropyrrolo[l,2-a] quinoxalin-l-one. Jpn Patent 6720069, 06 Oct 1967. [CA 69(5), 19217(1968)]... [Pg.207]

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

Outline efficient syntheses of each of the following alkynes from... [Pg.371]

An efficient general synthesis of a-chiral (Z)- and (H)-a1kenes ia high enantiomeric purity is based on the hydroboration of alkynes and 1-bromoaIkynes, respectively, with enantiomericaHy pure IpcR BH readily available by the hydroboration of prochiral alkenes with monoisopiaocampheylborane, followed by crystallization (519). [Pg.324]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Acetylene.. H—C= C—H, the simplest alkyne, was once widely used in industry as the starting material for the preparation of acetaldehyde, acetic acid, vinyl chloride, and other high-volume chemicals, but more efficient routes to these substances using ethylene as starting material are now available. Acetylene is still used in the preparation of acrylic polymers but is probably best known as the gas burned in high-temperature oxy-acetylene welding torches. [Pg.259]

With the exocyclic alkylidene at C-13 properly in place, the elaboration of the l,5-diyn-3-ene moiety can now be addressed. Cleavage of both acetate and trimethylsilyl functions in 86 with basic methanol, followed by triethylsilylation of the newly formed tertiary hydroxyl group, efficiently affords alkyne 25 (86 % overall yield). This substance was regarded as a viable candidate for a Pd-catalyzed coupling reaction.12 Indeed, treatment of 25 with (Z)-chloroenyne 26 in the presence of a catalytic amount of Pd(PPh3)4 and Cu1 results in the formation of enediyne 24 in 91 % yield. [Pg.553]

By using a cocatalyst of Pd-Cu, aryl-alkenyl halides couple efficiently widi alkynes to generate die disubstituted alkynes (Scheme 9.6).8 This coupling reaction has been applied to die synthesis of polyphenyleneethynylenes by Yamamoto et al. in 1984 (Scheme 9.7).9a Due to the ready availability of diacetylenes and the mild coupling condition, this strategy has been widely used for die preparation of many poly(aryleneethynylene)s.9... [Pg.468]

A cross-coupling reactions of terminal alkynes with terminal alkenes 32 supported on Merrifield-resin (Scheme 4.5) in the presence of Grubs ruthenium initiator [Cl2(PCy3)2Ru = CHPh] provided efficient access to supported 1,3-dienes 33 which were transformed into octahydrobenzazepinones 34 via MeAlCl2 catalyzed Diels-Alder reaction [27]. [Pg.152]

A microwave-assisted three-component reaction has been used to prepare a series of 1,4-disubstituted-1,2,3-triazoles with complete control of regiose-lectivity by click chemistry , a fast and efficient approach to novel functionalized compounds using near perfect reactions [76]. In this user-friendly procedure for the copper(l) catalyzed 1,3-dipolar cycloaddition of azides and alkynes, irradiation of an alkyl halide, sodium azide, an alkyne and the Cu(l) catalyst, produced by the comproportionation of Cu(0) and Cu(ll), at 125 °C for 10-15 min, or at 75 °C for certain substrates, generated the organic azide in situ and gave the 1,4-disubstituted regioisomer 43 in 81-93% yield, with no contamination by the 1,5-regioisomer (Scheme 18). [Pg.45]

Several ways to suppress the 2-oxonium-[3,3]-rearrangements might be envisioned. Apart from the introduction of a bulky substituent R at the aldehyde (Scheme 23) a similar steric repulsion between R and R might also be observed upon introduction of a bulky auxiliary at R. A proof-of-principle for this concept was observed upon by using of a trimethylsilyl group as substituent R in the alkyne moiety (Scheme 25, R = TMS). This improvement provided an efficient access to polysubstituted dihydropyrans via a silyl alkyne-Prins cyclization. Ab initio theoretical calculations support the proposed mechanism. Moreover, the use of enantiomerically enriched secondary homopropargylic alcohols yielded the corresponding oxa-cycles with similar enantiomeric purity [38]. [Pg.17]

The cyclotrimerization of alkynes to aromatic compounds, observed to occur efficiently on reduced Ti02 (001) surfaces during TPD experiments, can also be carried out as a genuinely catals tic reaction at low pressures. A kinetic model of the cyclotrimerization reaction describing the pressure and temperature dependence of the behavior observed was constructed (Scheme 1). [Pg.303]

Palladium(O) or readily reduced paUadium(II) complexes were the most efficient catalysts, giving higher yields than analogous Pt catalysts. The Markovnikov product was formed with high regioselectivity. In dialkynes, both C=C bonds could be hy-drophosphorylated, while the C=C double bond in a cyclohexenyl alkyne subshtuent did not react. With trimethylsilylacetylene, unusual anti-Markovnikov selectivity was observed. [Pg.154]

Hydrozirconation of terminal alkynes R-C=CH (R= aryl, alkyl) with 1 affords terminally ( )-Zr-substituted alkenes with high efficiency and excellent stereochemical and regiochemical control (>98%). These alkenylzirconocene complexes are of particular interest for synthetic use [136, 143, 144]. Moreover, beside the electropositive halogen sources [145] and heteroatom electrophiles [3] used in the pioneering studies to directly cleave the Zr-C bond, ( )-vinyl-Zr complexes were recently transformed into a number of other trans-functionalized alkenes such as ( )-vinyl-sul-fides[146], vinylic selenol esters [147], vinyl-sulfones [148], vinyl-iodonium [149], vinyl-(R0)2P(0) [150], and vinilic tellurides [143]. [Pg.264]


See other pages where Alkyne efficiency is mentioned: [Pg.52]    [Pg.367]    [Pg.770]    [Pg.367]    [Pg.3552]    [Pg.244]    [Pg.216]    [Pg.52]    [Pg.367]    [Pg.770]    [Pg.367]    [Pg.3552]    [Pg.244]    [Pg.216]    [Pg.231]    [Pg.154]    [Pg.484]    [Pg.486]    [Pg.491]    [Pg.155]    [Pg.159]    [Pg.585]    [Pg.616]    [Pg.278]    [Pg.446]    [Pg.124]    [Pg.168]    [Pg.132]    [Pg.279]    [Pg.54]    [Pg.10]    [Pg.12]    [Pg.16]    [Pg.237]    [Pg.24]    [Pg.54]    [Pg.212]    [Pg.235]    [Pg.300]    [Pg.143]    [Pg.144]    [Pg.344]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



© 2024 chempedia.info