Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyls electron-deficient

In the first example (I) T.J. Donohoe et al. utilized the Birch reduction to reduce then alkylate electron-deficient 2- and... [Pg.60]

Comparison of data for the nitration of alkyl- and halogenobenzenes with those for the related p-nitro-compounds supports the view that the rate of nitration of highly electron-deficient systems is determined by polarizability factors which enhance the reactivity of the substituted by comparison with that of the unsubstituted system. [Pg.186]

Metal Alibis and Alkoxides. Metal alkyls (eg, aluminum boron, sine alkyls) are fairly active catalysts. Hyperconjugation with the electron-deficient metal atom, however, tends to decrease the electron deficiency. The effect is even stronger in alkoxides which are, therefore, fairly weak Lewis acids. The present discussion does not encompass catalyst systems of the Ziegler-Natta type (such as AIR. -H TiCl, although certain similarities with Friedel-Crafts systems are apparent. [Pg.564]

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

An interesting method for the substitution of a hydrogen atom in rr-electron deficient heterocycles was reported some years ago, in the possibility of homolytic aromatic displacement (74AHC(16)123). The nucleophilic character of radicals and the important role of polar factors in this type of substitution are the essentials for a successful reaction with six-membered nitrogen heterocycles in general. No paper has yet been published describing homolytic substitution reactions of pteridines with nucleophilic radicals such as alkyl, carbamoyl, a-oxyalkyl and a-A-alkyl radicals or with amino radical cations. [Pg.290]

Alkyl radicals produced by oxidative decarboxylation of carboxylic acids are nucleophilic and attack protonated azoles at the most electron-deficient sites. Thus imidazole and 1-alkylimidazoles are alkylated exclusively at the 2-position (80AHC(27)241). Similarly, thiazoles are attacked in acidic media by methyl and propyl radicals to give 2-substituted derivatives in moderate yields, with smaller amounts of 5-substitution. These reactions have been reviewed (74AHC(i6)123) the mechanism involves an intermediate cr-complex. [Pg.73]

This synthesis is only one example of a wide range of reactions which involve aryl (or alkyl) radical addition to electron-deficient double bonds resulting in reduction.The corresponding oxidative reaction using aryl radicals is the well known Meerwein reaction, which uses copper(II) salts. [Pg.69]

It is believed that this process involves migration through a pentacoordinate protonated cyclopropane in which an alkyl group acts as a bridge in an electron-deficient carbocation structure. The cyclohexyl- methylcyclopentyl rearrangement is postulated to occur by rearrangement between two such structures. [Pg.324]

An interesting intermediate 30 was proposed to result from the sequential addition of pyridine to tetrachlorocyclopropene (31). Compound 30 represents an alkyl nitrogen ylide with two 1-chloroalkyl pyridinium moieties in the same molecule. Pyridines with electron-withdrawing groups and heterocycles with an electron-deficient nitrogen, for example, pyridine-3-carbaldehyde or quinoline, react with 31 to yield the corresponding mono-substituted products 32a and 32b (83JOC2629) (Scheme 8). [Pg.188]

In the presence of strong bases, carbonyl compounds form enolate ions, which may be employed as nucleophilic reagents to attack alkyl halides or other suitably electron-deficient substrates giving carbon-carbon bonds. (The aldol and Claisen condensations... [Pg.87]

AlkenyldQon using nitroalkanes foUowedby theselecQve reducQonof the double bends with NiCl and NdBbb, can be regarded as the addition of alkyl aruons to electron-deficient alkenes... [Pg.221]

Nitro compounds have been converted into various cyclic compounds via cycloaddidon reactions. In particular, nitroalkenes have proved to be nsefid in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes ind react v/ith dienes to yield 3-nitrocy-clohexenes. Nitroalkenes c in also act as heterodienes ind react v/ith olefins in the presence of Lewis acids to yield cyclic alkyl nkronates, which undergo [3- 2 cycloaddidon. Nitro compounds are precursors for nitnie oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3- 2 cycloaddldon reacdons. Thus, nitro compounds play important roles in the chemistry of cycloaddidon reacdons. In this chapter, recent developments of cycloaddinon chemistry of nitro compotmds and their derivadves are summarized. [Pg.231]

In the absence of heteroatom containing substituents (e.g. halo-, cyano-), at or conjugated with the radical center, carbon-centered radicals have nucleophilic character. Thus, simple alkyl radicals generally show higher reactivity toward electron-deficient monomers (eg. acrylic monomers) than towards electron-rich monomers (e.g, VAc, S) - Table 3.6. [Pg.113]

Absolute rate constants for addition reactions of cyanoalkyl radicals are significantly lower than for unsubstituted alkyl radicals falling in the range 103-104 M V1.341 The relative reactivity data demonstrate that they possess some electrophilic character. The more electron-rich VAc is very much less reactive than the electron-deficient AN or MA. The relative reactivity of styrene and acrylonitrile towards cyanoisopropyl radicals would seem to show a remarkable temperature dependence that must, from the data shown (Table 3.6), be attributed to a variation in the reactivity of acrylonitrile with temperature and/or other conditions. [Pg.116]

Alkyl mercuric hydrides are generated in situ by reduction of an alkyl mercuric salt with sodium borohydridc (Scheme 3.91). Their use as radical traps was first reported by Hill and Whitesides491 and developed for the study of radical-olefin reactions by Giese,489490 Tirrell492 and coworkers. Careful choice of reagents and conditions provides excellent yields of adducts of nucleophilic radicals (e.g. -hexyl, cyclohexyl, /-butyl, alkoxyalkyl) to electron-deficient monomers (e.g. acrylics). [Pg.137]

The ability of Fischer carbene complexes to transfer their carbene ligand to an electron-deficient olefin was discovered by Fischer and Dotz in 1970 [5]. Further studies have demonstrated the generality of this thermal process, which occurs between (alkyl)-, (aryl)-, and (alkenyl)(alkoxy)carbene complexes and different electron-withdrawing substituted alkenes [6] (Scheme 1). For certain substrates, a common side reaction in these processes is the insertion of the carbene ligand into an olefinic C-H bond [6, 7]. In addition, it has been ob-... [Pg.62]

Asymmetric versions of the cyclopropanation reaction of electron-deficient olefins using chirally modified Fischer carbene complexes, prepared by exchange of CO ligands with chiral bisphosphites [21a] or phosphines [21b], have been tested. However, the asymmetric inductions are rather modest [21a] or not quantified (only the observation that the cyclopropane is optically active is reported) [21b]. Much better facial selectivities are reached in the cyclopropanation of enantiopure alkenyl oxazolines with aryl- or alkyl-substituted alkoxy-carbene complexes of chromium [22] (Scheme 5). [Pg.65]

Electron-deficient 1,3-dienes are known to react when heated with metho-xy(aryl)- or methoxy(alkyl)carbene complexes to afford vinylcyclopropane derivatives with high regioselectivity and diastereoselectivity [8a, 24]. Cyclo-propanation of the double bond not bearing the acceptor functional group and... [Pg.66]

As first described by Krizan and Martin,6 the in situ trapping protocol, i.e., having the base and electrophile present in solution simultaneously, makes it possible to lithiate substrates that are not applicable in classical ortho-lithiation reactions.7 Later, Caron and Hawkins utilized the compatibility of lithium diisopropylamide and triisopropyl borate to synthesize arylboronic acid derivatives of bulky, electron deficient neopentyl benzoic acid esters.8 As this preparation illustrates, the use of lithium tetramethylpiperidide instead of lithium diisopropylamide broadens the scope of the reaction, and makes it possible to functionalize a simple alkyl benzoate.2... [Pg.71]

In discussing the elFect of structure on the stabilization of alkyl cations on the basis of the carbonylation-decarbonylation equilibrium constants, it is assumed that—to a first approximation—the stabilization of the alkyloxocarbonium ions does not depend on the structure of the alkyl group. The stabilization of the positive charge in the alkyloxocarbonium ion is mainly due to the resonance RC = 0 <-> RC = 0+, and the elFect of R on this stabilization is only of minor importance. It has been shown by Brouwer (1968a) that even in the case of (tertiary) alkylcarbonium ions, which would be much more sensitive to variation of R attached to the electron-deficient centre, the stabilization is practically independent of the structure of the alkyl groups. Another argument is found in the fact that the equilibrium concentrations of isomeric alkyloxocarbonium ions differ by at most a factor of 2-3 from each other (Section III). Therefore, the value of K provides a quantitative measure of the stabilization of an alkyl cation. In the case of R = t-adamantyl this equilibrium constant is 30 times larger than when R = t-butyl or t-pentyl, which means that the non-planar t-adamantyl ion is RT In 30= 2-1 kcal... [Pg.33]

Radical-based carbonylation procedures can be advantageously mediated by (TMSlsSiH. Examples of three-component coupling reactions are given in Reactions (74) and (75). The cascade proceeds by the addition of an alkyl or vinyl radical onto carbon monoxide with formation of an acyl radical intermediate, which can further react with electron-deficient olefins to lead to the polyfunctionalized compounds. ... [Pg.153]

Catecholborane and pinacolborane, in which the boron has two oxygen substituents, are much less reactive hydroborating reagents than alkyl or haloboranes because the boron electron deficiency is attenuated by the oxygen atoms. Nevertheless, they are useful reagents for certain applications.161 The reactivity of catecholborane has been found to be substantially enhanced by addition of 10-20% of N,N-dimethylacetamide to CH2C12.162... [Pg.340]


See other pages where Alkyls electron-deficient is mentioned: [Pg.195]    [Pg.63]    [Pg.551]    [Pg.316]    [Pg.339]    [Pg.59]    [Pg.322]    [Pg.281]    [Pg.41]    [Pg.412]    [Pg.290]    [Pg.165]    [Pg.355]    [Pg.187]    [Pg.198]    [Pg.251]    [Pg.169]    [Pg.230]    [Pg.111]    [Pg.768]    [Pg.110]    [Pg.69]    [Pg.10]    [Pg.154]    [Pg.155]    [Pg.159]    [Pg.62]    [Pg.783]    [Pg.1135]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Electron deficiency

Electron-deficient alkenes, alkylation

© 2024 chempedia.info