Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyls, cobalt/iron

Earlier catalysts were based on cobalt, iron, and nickel. However, recent catalytic systems involve rhodium compounds promoted by methyl iodide and lithium iodide (48,49). Higher mol wt alkyl esters do not show any particular abiUty to undergo carbonylation to anhydrides. [Pg.390]

Similar pyrone complexes were isolated by Semmelhack97a as the products of the reaction between tetracarbonyl[ethoxy(alkyl)carbene]iron(0) complexes and various acetylenes. Vinylketene complexes are proposed as key intermediates in the mechanism of this conversion, which closely matches analogous reactions with cobalt carbenes51 (see Section V,B), while showing crucial differences with the analogous reaction of a chromium carbene (see Section II,B). [Pg.324]

As the first transition series is ascended the metal—carbon bond becomes weaker and the alkyls of iron, cobalt and nickel are stable at ambient temperatures only when coordinated with strong it donors such as 1,1 bipyridyl [12], Organic groupings which form delocalized bonds with the metal are more stable and many tt complexes or 7r-allylic compounds of transition metals are known. The metal—cyclopentadienyl bond is too stable for these compounds to initiate polymerization, but some TT-allyl compounds will polymerize monomers such as butadiene where a comparable structure will be retained in the propagating chain. [Pg.135]

Vanhoye and coworkers [402] synthesized aldehydes by using the electrogenerated radical anion of iron pentacarbonyl to reduce iodoethane and benzyl bromide in the presence of carbon monoxide. Esters can be prepared catalytically from alkyl halides and alcohols in the presence of iron pentacarbonyl [403]. Yoshida and coworkers reduced mixtures of organic halides and iron pentacarbonyl and then introduced an electrophile to obtain carbonyl compounds [404] and converted alkyl halides into aldehydes by using iron pentacarbonyl as a catalyst [405,406]. Finally, a review by Torii [407] provides references to additional papers that deal with catalytic processes involving complexes of nickel, cobalt, iron, palladium, rhodium, platinum, chromium, molybdenum, tungsten, manganese, rhenium, tin, lead, zinc, mercury, and titanium. [Pg.368]

Structural types for organometallic rhodium and iridium porphyrins mostly comprise five- or six-coordinate complexes (Por)M(R) or (Por)M(R)(L), where R is a (T-bonded alkyl, aryl, or other organic fragment, and Lisa neutral donor. Most examples contain rhodium, and the chemistry of the corresponding iridium porphyrins is much more scarce. The classical methods of preparation of these complexes involves either reaction of Rh(III) halides Rh(Por)X with organolithium or Grignard reagents, or reaction of Rh(I) anions [Rh(Por)] with alkyl or aryl halides. In this sense the chemistry parallels that of iron and cobalt porphyrins. [Pg.293]

Carbonvlation of Benzyl Halides. Several organometallic reactions involving anionic species in an aqueous-organic two-phase reaction system have been effectively promoted by phase transfer catalysts(34). These include reactions of cobalt and iron complexes. A favorite model reaction is the carbonylation of benzyl halides using the cobalt tetracarbonyl anion catalyst. Numerous examples have appeared in the literature(35) on the preparation of phenylacetic acid using aqueous sodium hydroxide as the base and trialkylammonium salts (Equation 1). These reactions occur at low pressures of carbon monoxide and mild reaction temperatures. Early work on the carbonylation of alkyl halides required the use of sodium amalgam to generate the cobalt tetracarbonyl anion from the cobalt dimer(36). [Pg.146]

In the case of iron, the Fe(ni) alkyl complex is reduced, in a successive step, into the Fe(ii) alkyl complex by the starting iron(i) porphyrin, whereas this reaction does not occur with cobalt. This diflference is related to the fact... [Pg.98]

The possibility that substitution results from halogen-atom transfer to the nucleophile, thus generating an alkyl radical that could then couple with its reduced or oxidized form, has been mentioned earlier in the reaction of iron(i) and iron(o) porphyrins with aliphatic halides. This mechanism has been extensively investigated in two cases, namely the oxidative addition of various aliphatic and benzylic halides to cobalt(n) and chromiumfn) complexes. [Pg.115]

Unlike Pt catalysts, the triad complexes of iron and cobalt catalyze competihvely both dehydrogenative silylation and hydrosilylation [11]. The reaction can proceed via a complex containing the o-alkyl and o-silylalkyl ligands (Scheme 14.1). [Pg.346]

Many transition metal alkyls react with carbon monoxide to give acyl compounds. In all these cases the acyl derivatives can be detected at least by infrared methods and in most cases isolated. Molybdenum, manganese, rhenium, iron, cobalt, rhodium, nickel, palladium, and platinum alkyls, Grignard reagents, and boranes, all react with carbon monoxide, and one can explain the products from these on the basis of carbon monoxide inserting into the metal alkyl. [Pg.208]

Again several alkyls add—molybdenum, chromium, iron, cobalt, nickel, the alkali metal alkyls and aluminum alkyls react. A tin alkoxide has recently been studied by Russian workers and found to add to acetylenes. Mercury chloride, of course, adds and two cobalt—cobalt bonded compounds add to acetylene. The second is questionable because it dissociates in solution and the reaction may be a radical reaction, one cobalt adding to each end of the triple bond. [Pg.210]

Detailed mechanistic studies with respect to the application of Speier s catalyst on the hydrosilylation of ethylene showed that the process proceeds according to the Chalk-Harrod mechanism and the rate-determining step is the isomerization of Pt(silyl)(alkyl) complex formed by the ethylene insertion into the Pt—H bond.613 In contrast to the platinum-catalyzed hydrosilylation, the complexes of the iron and cobalt triads (iron, ruthenium, osmium and cobalt, rhodium, iridium, respectively) catalyze dehydrogenative silylation competitively with hydrosilylation. Dehydrogenative silylation occurs via the formation of a complex with cr-alkyl and a-silylalkyl ligands ... [Pg.343]


See other pages where Alkyls, cobalt/iron is mentioned: [Pg.335]    [Pg.160]    [Pg.176]    [Pg.192]    [Pg.302]    [Pg.302]    [Pg.305]    [Pg.389]    [Pg.347]    [Pg.119]    [Pg.248]    [Pg.506]    [Pg.874]    [Pg.80]    [Pg.120]    [Pg.140]    [Pg.54]    [Pg.230]    [Pg.286]    [Pg.43]    [Pg.108]    [Pg.128]    [Pg.128]    [Pg.132]    [Pg.132]    [Pg.152]    [Pg.184]    [Pg.965]    [Pg.99]    [Pg.43]    [Pg.305]    [Pg.138]    [Pg.287]   
See also in sourсe #XX -- [ Pg.129 , Pg.130 , Pg.131 ]




SEARCH



Cobalt-iron

Iron alkyls

© 2024 chempedia.info