Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylcobalt carbonyls, isomerization

Alkylcobalt carbonyl isomerization via the formation of olefincobalt-carbonyl hydride complexes with retention of the olefin attached to the cobalt atom has been suggested as the mechanism of formation, of the necessary precursors of the products with high stereospecificity. [Pg.297]

The carboalkoxylation of saturated aliphatic halides may give mixtures of isomeric products if carried out above about 75°, at least with tetra-carbonylcobalt anion as catalyst. Isomerization occurs because the intermediate alkylcobalt complex isomerizes competitively with the carbonylation at the higher temperatures. The isomerization probably involves stepwise loss of carbon monoxides to the tricarbonylalkylcobalt(I) stage. This complex then may reversibly rearrange by a hydride elimination to a hydride-olefin-71 complex. The hydride may also add back in the reverse direction and produce an isomeric alkyl. Subsequent readdition of carbon monoxides and alcoholysis would produce isomerized ester ... [Pg.332]

For a more detailed consideration of the isomerization of alkyl- and acylcobalt carbonyls, Section V,B should be consulted. It is sufficient to say here that this isomerization is normally slow at room temperature, especially for the linear acylcobalt tetracarbonyls. The reaction also appears to be quite sensitive to solvent for reasons which have not yet been adequately explained. Alkylcobalt carbonyls are rapidly converted to the acylcobalt carbonyls and do not appear to give rise to any significantly faster isomerization. [Pg.125]

Piacenti s results for 1- and 2-pentene at high pressure would then fit in quite well with the fact that Takegami et al. (147-149) found that linear acylcobalt tetracarbonyls were much more difficult to isomerize than their branched-chain isomers. However, Piacenti et al. reject the possibility of an isomerization of alkylcobalt carbonyls in view of their work on the hydro-formylation of orthoformic esters (Section II, D,2). [Pg.134]

This isomerization to ketones also occurs under the milder conditions under which cobalt hydrocarbonyl is reacted with epoxides, however, and it seems likely that cobalt hydrocarbonyl was also present under the conditions of Eisenmann s experiment. Heck has therefore suggested that the mechanism could involve the formation of a hydroxyalkylcobalt carbonyl followed by elimination to produce the enol form of the ketone in the same way that alkylcobalt carbonyls can give olefins. [Pg.144]

Originally, Piacenti et al. explained the formation of isomeric products in terms of an equilibrium of alkylcobalt carbonyls with olefin-hydrocarbonyl complexes as in the Oxo reaction. More recently, however, they have noted that the conditions under which n-propyl orthoformate gave no isomeric products (below 150° C, carbon monoxide pressure 10 atm) are conditions under which isomerization occurs readily in the hydroformylation of olefins (115). Since alkylcobalt carbonyls were formed in both reactions they dismissed the possibility that this isomerization was due to alkyl- or acylcobalt carbonyls. The fact that Takegami et al. have found that branched-chain acylcobalt tetracarbonyls isomerize more readily than straight-chain acylcobalt tetracarbonyls would seem to fit in quite well with the results of Piacenti et al., however, and suggests that the two findings may not be so irreconcilable as might at first appear (see Section II, B,2). [Pg.146]

Olefin isomerization was found to occur as a side reaction. This was presumed to occur via the alkylcobalt carbonyls formed by Eq. (71) as discussed in Section V and elsewhere. [Pg.152]

The possible sources of isomeric aldehyde formation include olefin isomerization, regioselectivity of the addition of the hydridocobalt carbonyl to the olefin, isomerization of the alkylcobalt carbonyl, and isomerization of the acylco-balt carbonyl species. There is no evidence for an isomerization of the alkylcobalt carbonyl species under the conditions of industrial oxo synthesis (high pressure) [96]. In contrast, the isomerization of a coordinated olefin is well known and a plethora of studies have proven this behavior [4]. [Pg.48]


See other pages where Alkylcobalt carbonyls, isomerization is mentioned: [Pg.21]    [Pg.25]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Alkylcobalt

Alkylcobalt carbonyl

© 2024 chempedia.info