Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation of -lactone

As will be seen in the following section the most widespread use of the alkylation of lactones is that of y-lactones. Clearly the need for a-substitution of y-lactones was present before the advent of Creger s non-nucleophilic base. The most versatile method was the reaction of a-substitutcd malonic or acetoacetic esters with epoxyethane or 2-chloroethanol, followed by hydrolysis and decarboxylation or ketonic cleavage5. Another common approach was the condensation of butyrolactones (y-lactones) with aldehydes and subsequent hydrogenation5,s. It should be mentioned at this point that these older methods still have their merits, especially for large scale production. [Pg.762]

Alkylation of vinyl lactones. Trost and Klun have reported that alkylation of TT-allylpalladium complexes derived from vinyl lactones provides a stereocontrolled approach to acyclic systems such as the side chains of a -tocopherol and vitamin K. The alkylation of lactones 1-4 proceeds with greater than 95% stereoselectivity. [Pg.533]

Brauman el have examined the mechanism of the alkylation of lactones by reacting optically ac-... [Pg.317]

Chemoselective C-alkylation of the highly acidic and enolic triacetic acid lactone 104 (pAl, = 4.94) and tetronic acid (pA, = 3.76) is possible by use of DBU[68]. No 0-alkylation takes place. The same compound 105 is obtained by the regioslective allylation of copper-protected methyl 3,5-dioxohexano-ate[69]. It is known that base-catalyzed alkylation of nitro compounds affords 0-alkylation products, and the smooth Pd-catalyzed C-allylation of nitroalkanes[38.39], nitroacetate[70], and phenylstilfonylnitromethane[71] is possible. Chemoselective C-allylation of nitroethane (106) or the nitroacetate 107 has been applied to the synthesis of the skeleton of the ergoline alkaloid 108[70]. [Pg.305]

The reaction can be applied to allyl malonates. Alkylation of diallyl mal-onate (734) with bromoacetate and acetoxymethylation afford the mixed triester 735. Treatment of the tricster 735 with Pd catalyst affords allyl ethyl itaconate (736). In a similar way, a-methylene lactone and the lactam 737 can be prepared[462]. [Pg.391]

Indoles can also be alkylated by lactones[l4]. Base-catalysed reactions have been reported for (3-propiolactone[15], y-butyrolactone[10] and 5-valerolac-tone[10]. These reactions probably reflect the thermodynamic instability of the N -acylindole intermediate which would be formed by attack at the carbonyl group relative to reclosure to the lactone. The reversibility of the JV-acylation would permit the thermodynamically favourable N-alkylation to occur. [Pg.91]

Double Fiiedel-Ciafts alkylation of configuiationally pure pyiocene (a substituted lactone) with aiomatics results in the formation of cycloalkylation product with retention of configuration at the chiral center (63). [Pg.556]

Variations and Improvements on Alkylations of Chiral OxazoUnes Metalated chiral oxazolines can be trapped with a variety of different electrophiles including alkyl halides, aldehydes,and epoxides to afford useful products. For example, treatment of oxazoline 20 with -BuLi followed by addition of ethylene oxide and chlorotrimethylsilane yields silyl ether 21. A second metalation/alkylation followed by acidic hydrolysis provides chiral lactone 22 in 54% yield and 86% ee. A similar... [Pg.240]

Removal of the unsaturated side-chain appendage from C-8 in 22 provides diol lactone 23 and allylic bromide 24 as potential precursors. In the synthetic direction, a diastereoselective alkylation of a hydroxyl-protected lactone enolate derived from 23 with allylic bromide 24 could accomplish the assembly of 22, an intermediate that possesses all of the carbon atoms of PGF2o- It was anticipated that preexisting asymmetry in the lactone enolate would induce the... [Pg.144]

The acid 19 has been dimerized, although in low yield, in the course of a perhydro-phenanthrene synthesis [141]. When the oxidation potential of the double bond is sufficiently lowered by alkyl substituents, lactone formation by oxidation of the couble bond rather than of the carboxyl group occurs (Eq. 7) [142] (see also chap. 15). [Pg.104]

Some representative Claisen rearrangements are shown in Scheme 6.14. Entry 1 illustrates the application of the Claisen rearrangement in the introduction of a substituent at the junction of two six-membered rings. Introduction of a substituent at this type of position is frequently necessary in the synthesis of steroids and terpenes. In Entry 2, formation and rearrangement of a 2-propenyl ether leads to formation of a methyl ketone. Entry 3 illustrates the use of 3-methoxyisoprene to form the allylic ether. The rearrangement of this type of ether leads to introduction of isoprene structural units into the reaction product. Entry 4 involves an allylic ether prepared by O-alkylation of a (3-keto enolate. Entry 5 was used in the course of synthesis of a diterpene lactone. Entry 6 is a case in which PdCl2 catalyzes both the formation and rearrangement of the reactant. [Pg.562]

The synthesis in Scheme 13.49 features use of an enantioselective allylic boronate reagent derived from diisopropyl tartrate to establish the C(4) and C(5) stereochemistry. The ring is closed by an olefin metathesis reaction. The C(2) methyl group was introduced by alkylation of the lactone enolate. The alkylation is not stereoselective, but base-catalyzed epimerization favors the desired stereoisomer by 4 1. [Pg.1207]

Irreversible inhibition is probably due to the alkylation of a histidine residue.43 Chymotrypsin is selectively inactivated with no or poor inhibition of human leukocyte elastase (HLE) with a major difference the inactivation of HLE is transient.42,43 The calculated intrinsic reactivity of the coumarin derivatives, using a model of a nucleophilic reaction between the ligand and the methanol-water pair, indicates that the inhibitor potency cannot be explained solely by differences in the reactivity of the lactonic carbonyl group toward the nucleophilic attack 43 Studies on pyridyl esters of 6-(chloromethyl)-2-oxo-2//-1 -benzopyran-3-carboxylic acid (5 and 6, Fig. 11.5) and related structures having various substituents at the 6-position (7, Fig. 11.5) revealed that compounds 5 and 6 are powerful inhibitors of human leukocyte elastase and a-chymotrypsin thrombin is inhibited in some cases whereas trypsin is not inhibited.21... [Pg.365]

The final ring coupling reaction is usually an O-alkylation of the sodium enolate with a methyl sulfonate-, bromo-, or chloro-butenolide in acetonitrile or an ether solvent (8.22-24). Use of the methyl sulfonate derivative is least preferred because of its poor stability (9,24). The isolated hydroxymethylene lactone can be allowed to react with the bromobutenolide using potassium carbonate in hexamethylphosphoric triamide (caution a potential carcinogen). [Pg.450]

MISCELLANEOUS BENZOHETEROCYCLES Partial reduction of lactone 166 (using for example diisobutylaluminum hydride in the cold) affords lactol 167. Condensation with nitromethane leads to the corresponding alkylated tetrahydrobenzopyran 170. The sequence probably starts by aldol reaction of the hydroxylactone form of the lactol (168) with nitrome thane to give the vinyl nitro intermediate 169 ... [Pg.390]

Dianions derived from cyclic a-nitro ketones have been used for the preparation of the natural product phoracanthlide and related macrocyclic lactones (see Scheme 5.2).13 Alkylation of dianion of a-nitro cyclic ketones is followed by radical denitration with Bu3SnH (see Section... [Pg.128]

As discussed in Chapter 9, various nucleophiles can be introduced at the ortho position of nitroarenes via the VNS process. This provides a useful strategy for the synthesis of indoles. One of the most attractive and general methods of indoles and indolinones would be the reductive cyclization of a-nitroaryl carbonyl compounds (Eq. 10.54). The VNS and related reactions afford a-nitroaryl carbonyl compounds by a simple procedure. For example, alkylation of 4-fluoronitrobenzene with a lactone silyl enol ether followed by reductive cyclization leads to tryptophols (Eq. 10.55).73... [Pg.341]


See other pages where Alkylation of -lactone is mentioned: [Pg.361]    [Pg.208]    [Pg.1266]    [Pg.325]    [Pg.95]    [Pg.938]    [Pg.361]    [Pg.208]    [Pg.1266]    [Pg.325]    [Pg.95]    [Pg.938]    [Pg.210]    [Pg.122]    [Pg.146]    [Pg.172]    [Pg.737]    [Pg.296]    [Pg.841]    [Pg.901]    [Pg.1021]    [Pg.855]    [Pg.161]    [Pg.855]    [Pg.35]    [Pg.102]    [Pg.441]    [Pg.251]    [Pg.37]    [Pg.52]    [Pg.187]    [Pg.322]   
See also in sourсe #XX -- [ Pg.853 ]




SEARCH



Of lactones

© 2024 chempedia.info