Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation biological example

In the first step, methionine is alkylated by ATP to form 5-adenosyimethionine. This reaction is a biological example of reaction 12 in Table 6.1. The methionine acts as a sulfur nucleophile in an 5 2 reaction and displaces the triphosphate ion. in the second step, the oxygen or nitrogen atom to be methylated acts as a nucleophile. The S-adenosylmethionine acts just like a methyl halide. Indeed, it has been shown that these methylation reactions take place with inversion of configuration. [Pg.193]

Alkylation at Oxygen a Biological Example. The Use of a Sulfonium Salt. [Pg.646]

Conversion of the C-2 amide to a biologically inactive nitrile, which can be further taken via a Ritter reaction (29) to the corresponding alkylated amide, has been accomphshed. When the 6-hydroxyl derivatives are used, dehydration occurs at this step to give the anhydro amide. Substituting an A/-hydroxymethylimide for isobutylene in the Ritter reaction yields the acylaminomethyl derivative (30). Hydrolysis affords an aminomethyl compound. Numerous examples (31—35) have been reported of the conversion of a C-2 amide to active Mannich adducts which are extremely labile and easily undergo hydrolysis to the parent tetracycline. This reverse reaction probably accounts for the antibacterial activity of these tetracyclines. [Pg.178]

Because of the important biological effects observed with 17a-methyl and 17a-ethynyl steroids, alkylation at the 17-position is of particular interest and many examples have been reported. [Pg.63]

Preparation of thiadiazoles via the Hurd-Mori cyclization has led to the synthesis of a variety of biologically active and functionally useful compounds. Discussion of reactions prior to 1998 on the preparation of thiadiazoles have been compiled in a review by Stanetty et al Recent syntheses of thiadiazoles as intermediates for useful transformations to other heterocycles have appeared. For example, the thiadiazole intermediate 36 was prepared from the hydrazone 35 and converted to benzofuran upon treatment with base. Similarly, the thiadiazole acid chloride 38 was converted to the hydrazine 39 which, upon base treatment, provided the pyrazolone, which can be sequentially alkylated in situ to provide the product 40. ... [Pg.287]

Crozet and co-workers have used S l reactions for synthesis of new heterocycles, which are expected to be biologically active (see also Section 7.3, which discusses synthesis of alkenes). For example, 2-chloromethyl-5-nitroimidazole reacts with the anion of 2-nitropropane to give 2-isopropylidene-5-nitroimidazole. It is formed via C-alkylation of the nitronate ion followed by elimination of HN02 (Eq. 5.33).51a Other derivatives of nitroimidazoles are also good substrates for SrnI reactions.5113 0... [Pg.135]

Potentially tautomeric pyrimidines and purines are /V-alkylated under two-phase conditions, using tetra-n-butylammonium bromide or Aliquat as the catalyst [75-77], Alkylation of, for example, uracil, thiamine, and cytosine yield the 1-mono-and 1,3-dialkylated derivatives [77-81]. Theobromine and other xanthines are alkylated at N1 and/or at N3, but adenine is preferentially alkylated at N9 (70-80%), with smaller amounts of the N3-alkylated derivative (20-25%), under the basic two-phase conditions [76]. These observations should be compared with the preferential alkylation at N3 under neutral conditions. The procedure is of importance in the derivatization of nucleic acids and it has been developed for the /V-alkylation of nucleosides and nucleotides using haloalkanes or trialkyl phosphates in the presence of tetra-n-butylammonium fluoride [80], Under analogous conditions, pyrimidine nucleosides are O-acylated [79]. The catalysed alkylation reactions have been extended to the glycosidation of pyrrolo[2,3-r/]pyrimidines, pyrrolo[3,2-c]pyridines, and pyrazolo[3,4-r/]pyrimidines (e.g. Scheme 5.20) [e.g. 82-88] as a route to potentially biologically active azapurine analogues. [Pg.211]

The above examples are purely phenomenological and do not allow any generalization. Their brief presentation in this section simply aims to suggest the structural diversity of biologically active alkyl esters and some metabolic differences in their hydrolytic inactivation. [Pg.408]

It has been recognised for some time (see for example reference 1), that surfactants can increase the rate and extent of transport of solute molecules through biological membranes by fluidisation of the membrane. It is only recently, however, that sufficient work has been carried out to allow some analysis of structure-action relationships. In this overview an attempt is made, by reference to our own work and to work in the literature, to define those structural features in polyoxyethylene alkyl and aryl ethers which give rise to biological activity, especially as it is manifested in interactions with biomembranes and subsequent increase in the transport of drug molecules. [Pg.190]

The difficulty with HLB as an index of physicochemical properties is that it is not a unique value, as the data of Zaslavsky et al. (1) on the haemolytic activity of three alkyl mercaptan polyoxyethylene derivatives clearly show in Table 1. Nevertheless data on promotion of the absorption of drugs by series of nonionic surfactants, when plotted as a function of HLB do show patterns of behaviour which can assist in pin-pointing the necessary lipophilicity required for optimal biological activity. It is evident however, that structural specificity plays a part in interactions of nonionic surfactants with biomembranes as shown in Table 1. It is reasonable to assume that membranes with different lipophilicities will"require" surfactants of different HLB to achieve penetration and fluidization one of the difficulties in discerning this optimal value of HLB resides in the problems of analysis of data in the literature. For example, Hirai et al. (8 ) examined the effect of a large series of alkyl polyoxyethylene ethers (C4,C0, Cj2 and C 2 series) on the absorption of insulin through the nasal mucosa of rats. Some results are shown in Table II. [Pg.192]


See other pages where Alkylation biological example is mentioned: [Pg.126]    [Pg.402]    [Pg.107]    [Pg.144]    [Pg.5]    [Pg.863]    [Pg.89]    [Pg.330]    [Pg.325]    [Pg.163]    [Pg.297]    [Pg.284]    [Pg.89]    [Pg.14]    [Pg.122]    [Pg.261]    [Pg.330]    [Pg.173]    [Pg.104]    [Pg.489]    [Pg.386]    [Pg.429]    [Pg.954]    [Pg.1197]    [Pg.199]    [Pg.309]    [Pg.326]    [Pg.3]    [Pg.36]    [Pg.93]    [Pg.130]    [Pg.27]    [Pg.41]    [Pg.320]    [Pg.39]    [Pg.145]    [Pg.127]   
See also in sourсe #XX -- [ Pg.863 ]

See also in sourсe #XX -- [ Pg.863 ]

See also in sourсe #XX -- [ Pg.889 ]




SEARCH



Biological Examples

Biological alkylations

© 2024 chempedia.info