Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

5-alkyl-2-alkylthio

SR Alkylmagnesium thiolate Alkyl(alkylthio)magnesium or alkanethiolatoalkylmagnesium... [Pg.4]

Alkyl-alkylthio-(2-phenyl-hydrazino)- El, 307 (Cl NH-NH-Ar) Alkyl-phenyl-trimethylsilyl- XIII/5, 264... [Pg.56]

Dialkylarsine sulfides rearrange to alkyl(alkylthio)arylarsine up>on heating (equation 167 ). [Pg.840]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

With a carboxy group on the alkyl chain of the alkylthio substituent. C-4 may be involved in an intramolecular nucleophilic substitution to give 159 (Scheme 84). [Pg.418]

A-2-Thiazoline-4-ones are usually obtained by the heterocydization method (38b-388). 2 Alkylthio-4(5)-thiazolones (162) are obtained by alkylation at sulfur of rhodanine (160) in nonpolar solvent (Scheme 85). [Pg.419]

It is estimated that mote than 25 x 10 different potentially toxic OP esters can be made using Schrader s classic (27) formula for effective phosphorylating agents, (39), where R and are short-chain alkyl, alkoxy, alkylthio, or alkylamino groups, and X is a displaceable moiety with a high energy P-bond such as E or acyl anhydride, and the pentavalent phosphoms atom is bonded to oxygen or sulfur. [Pg.279]

Ph) or OPh, the last two of which may be substituted by up to three groups selected from alkyl, alkoxy, sulfonate, carboxylate, alkylthio-,... [Pg.46]

Alkylthio- and arylthio-pyridazines can be prepared from the corresponding halo-substituted pyridazines by using appropriate alkyl and aryl thiolates. [Pg.27]

Alkylation of thioxo groups to give alkylthio derivatives occurs normally (65CPB586). [Pg.241]

Hydroxy and mercapto substituents at the 3- and 5-positions can also exist in tautomeric forms (see Section 4.01.5.2) and can be alkylated at either the substituent or the ring nitrogen atom. 3-Methoxy groups are not replaced by nucleophiles, but both 3- and 5-alkylthio groups react readily, as does 3-methoxy-l,2-benzisothiazole. Alkylthio compounds can be oxidized to sulfoxides and sulfones, and the latter readily undergo nucleophilic replacement. All the hydroxy compounds react with phosphorus pentachloride to give the chloro derivatives. [Pg.153]

Azete, trisdimethylamino-isolation, 7, 278 Azetes, 7, 237-284, 278-284 benzo fused, 7, 278 benzodiazepine fused applications, 7, 284 fused ring, 7, 341-362 structure, 7, 360 2,3-naphtho fusion, 7, 278 reactivity, 7, 279 structure, 7, 278 synthesis, 7, 282-283 Azetidine, acylring expansion, 7, 241 synthesis, 7, 246 Azetidine, 3-acyl-irradiation, 7, 239 synthesis, 7, 246 Azetidine, N-acyl-synthesis, 7, 245 Azetidine, alkyl-synthesis, 7, 246 Azetidine, 3-alkylthio-synthesis, 7, 246 Azetidine, 3-amino-synthesis, 7, 246 Azetidine, N-amino-oxidation, 7, 241 synthesis, 7, 246 Azetidine, aryl-synthesis, 7, 246... [Pg.524]

Benzo[6]thiophene, 2-acetyl-3-hydroxy-synthesis, 4, 892 Benzo[6]thiophene, 2-acyl-synthesis, 4, 918 Benzo[6]thiophene, 3-acyl-synthesis, 4, 918- 19 Benzo[6]thiophene, acylamino-synthesis, 4, 815 Benzo[6]thiophene, alkenyl-synthesis, 4, 917 Benzo[6]thiophene, 2-alkoxy-synthesis, 4, 929 Benzo[6]thiophene, 3-alkoxy-synthesis, 4, 929 Benzo[6]thiophene, 4-alkoxy-synthesis, 4, 930 Benzo[6]thiophene, 2-alkyl-synthesis, 4, 877-878 Benzo[6]thiophene, 2-alkylthio-synthesis, 4, 931 Benzo[6]thiophene, 2-amino-diazotization, 4, 810 reactivity, 4, 797 stability, 4, 810 synthesis, 4, 869, 924-925 tautomerism, 4, 38 Benzo[6]thiophene, 3-amino-cycloaddition reactions, 4, 68 synthesis, 4, 109, 881, 925 Benzo[6]thiophene, 4-amino-synthesis, 4, 925 Benzo[6]thiophene, 5-amino-synthesis, 4, 925 Benzo[6]thiophene, 7-amino-synthesis, 4, 925 Benzo[6]thiophene, 3-t-amyl-synthesis, 4, 915 Benzo[6]thiophene, 2-aryl-synthesis, 4, 881... [Pg.559]

Dithiolylium salts, 5-alkyl-3-alkylthio-self condensation, 6, 799... [Pg.618]

Beckmann rearrangement, 6, 156 Isothiazole, 3-alkoxy-tautomerism, 6, 145 Isothiazole, alkyl-bromination, 5, 58 Isothiazole, 3-alkyl-5-amino-synthesis, 6, 166 Isothiazole, alkylthio-mass spectra, 6, 142 Isothiazole, amino-azo dyes from, 1, 330 tautomerism, 6, 157 Isothiazole, 3-amino-synthesis, 5, 135 tautomerism, 6, 146 Isothiazole, 4-amino-azo dyes from, 6, 175 diazotization, 6, 158 methylation, 5, 95 quaternization, 6, 158 reactions... [Pg.681]

Purines, N-alkyl-N-phenyl-synthesis, 5, 576 Purines, alkylthio-hydrolysis, 5, 560 Mannich reaction, 5, 536 Michael addition reactions, 5, 536 Purines, S-alkylthio-hydrolysis, 5, 560 Purines, amino-alkylation, 5, 530, 551 IR spectra, 5, 518 reactions, 5, 551-553 with diazonium ions, 5, 538 reduction, 5, 541 UV spectra, 5, 517 Purines, N-amino-synthesis, 5, 595 Purines, aminohydroxy-hydrogenation, 5, 555 reactions, 5, 555 Purines, aminooxo-reactions, 5, 557 thiation, 5, 557 Purines, bromo-synthesis, 5, 557 Purines, chloro-synthesis, 5, 573 Purines, cyano-reactions, 5, 550 Purines, dialkoxy-rearrangement, 5, 558 Purines, diazoreactions, 5, 96 Purines, dioxo-alkylation, 5, 532 Purines, N-glycosyl-, 5, 536 Purines, halo-N-alkylation, 5, 529 hydrogenolysis, 5, 562 reactions, 5, 561-562, 564 with alkoxides, 5, 563 synthesis, 5, 556 Purines, hydrazino-reactions, 5, 553 Purines, hydroxyamino-reactions, 5, 556 Purines, 8-lithiotrimethylsilyl-nucleosides alkylation, 5, 537 Purines, N-methyl-magnetic circular dichroism, 5, 523 Purines, methylthio-bromination, 5, 559 Purines, nitro-reactions, 5, 550, 551 Purines, oxo-alkylation, 5, 532 amination, 5, 557 dipole moments, 5, 522 H NMR, 5, 512 pJfa, 5, 524 reactions, 5, 556-557 with diazonium ions, 5, 538 reduction, 5, 541 thiation, 5, 557 Purines, oxohydro-IR spectra, 5, 518 Purines, selenoxo-synthesis, 5, 597 Purines, thio-acylation, 5, 559 alkylation, 5, 559 Purines, thioxo-acetylation, 5, 559... [Pg.761]

Pyrimidine, I-alkyl-2-methyltetrahydro-C-thioacylation, 4, 807 Pyrimidine, 4-alkylsulfinyl-nucleophilie displaeement reaetions, 3, 97 Pyrimidine, 6-alkylsulfinyl-nucleophilic displacement reactions, 3, 97 Pyrimidine, 2-alkylsulfonyl-nueleophilie displaeement reactions, 3, 97 Pyrimidine, 4-alkylsulfonyl-nucleophilic displacement reactions, 3, 97 Pyrimidine, 6-alkylsulfonyl-nucleophilie displaeement reactions, 3, 97 Pyrimidine, alkylthio-dealkylation, 3, 95 desulfurization, 3, 95 oxidation, 3, 96 synthesis, 3, 135, 136 Pyrimidine, 2-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Prineipal Synthesis, 3, 136 Pyrimidine, 4-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Pyrimidine, 6-alkylthio-aminolysis, 3, 96 hydrolysis, 3, 95 Pyrimidine, 4-allenyloxy-rearrangement, 3, 93 Pyrimidine, 4-allyloxy-2-phenyl-rearrangement, 3, 93 Pyrimidine, 4-allynyloxy-rearrangement, 3, 93 Pyrimidine, 4-anilino-2,5,6-trifluoro-NMR, 3, 63 Pyrimidine, 2-aryl-pyrroleaeetic aeid from, 4, 152 Pyrimidine, arylazo-synthesis, 3, 131 Pyrimidine, 4-arylazo-reduetion, 3, 88... [Pg.803]

Thiazole, 2-acetylamino-4-methyl-alkylation, 6, 256 Thiazole, 2-acylamino-4-hydroxy-synthesis, 6, 297 Thiazole, 5-alkoxy-cleavage, 6, 289 synthesis, 6, 302 Thiazole, 2-alkyl-A7-alkylation, 6, 253 hydrogen exchange, 6, 276 methylation, 6, 253 quatemization, 6, 253-254 reactions, S, 88 Thiazole, 4-alkyl-A7-alkylation, 6, 253 methylation, 6, 253 quatemization, 6, 253-254 Thiazole, 5-alkyl-A7-alkylation, 6, 253 methylation, 6, 253 Thiazole, 2-alkylamino-tautomerism, 6, 248 Thiazole, 4-alkyl-2,5-dimethyl-quatemization, 6, 253-254 Thiazole, 2-alkylthio-reactions, S, 103 rearrangement, 5, 103 6, 291 Thiazole, 3-allyl-4-hydroxy-2-imino-synthesis, 6, 297 Thiazole, 2-allyloxy-rearrangement, 6, 289 Thiazole, 2-amino-diazo coupling, 6, 257 nitration, 6, 255... [Pg.871]

S-Benzyl and substituted S-benzyl derivatives, readily cleaved with sodium/ammonia, are the most frequently used thioethers. n-Alkyl thioethers are difficult to cleave and have not been used as protective groups. Alkoxymethyl or alkylthio-... [Pg.279]

Thiophenes substituted with groups such as alkyl, halogens, OCH3, and SCH3 show small but characteristic differences between 2- and 3-substituted compounds. In these cases, however, it is the 2-isomer which shows the less complex spectrum. Thus, 2-substituted alkylthio-phenes and halothiophenes show a single band with greater extinction than the 3-isomers whose spectra exhibit two peaks in a broadened absorption band. These differences are also present in the spectra of 2,5- and 3,4-dihalosubstituted compounds. In 2-substituted thiophenes, the intensity of the band varies inversely as the electronega-... [Pg.15]

Ethyl iodide and 5-amino-2-methyl-l,3,4-thiadiazole react at 110° to give the N-3 salt (78 R = Me, R = NH2, R" = Et), as shown by the presence of the very reactive methyl group this salt is also used to prepare cyanine dyes. The slow quatemization at the ring-nitrogen atom furthest from the amino group is consistent with the reactions observed in other ring systems. As would be e pected, 5-alkylthio-2-methyl-l,3,4-thiadiazoles form salts at the N-3 (78 R = Me, R - S-alkyl).i ... [Pg.34]


See other pages where 5-alkyl-2-alkylthio is mentioned: [Pg.35]    [Pg.74]    [Pg.182]    [Pg.56]    [Pg.285]    [Pg.384]    [Pg.397]    [Pg.26]    [Pg.56]    [Pg.57]    [Pg.134]    [Pg.290]    [Pg.299]    [Pg.102]    [Pg.86]    [Pg.161]    [Pg.161]    [Pg.529]    [Pg.677]    [Pg.684]    [Pg.755]    [Pg.770]    [Pg.784]    [Pg.826]    [Pg.35]   
See also in sourсe #XX -- [ Pg.58 ]

See also in sourсe #XX -- [ Pg.58 ]




SEARCH



2-alkylthio

Thiophene 3-acyl-5-alkyl-2-alkylthio

© 2024 chempedia.info