Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkoxides protonation

Cyanohydrin formation is a perfect example of base-catalyzed addition to a carbonyl group. The strong nucleophile adds in the first step to give an alkoxide. Protonation gives the cyanohydrin. [Pg.849]

Carbonyl condensations are alpha substitutions where the electrophile is another carbonyl compound. If the electrophile is a ketone or an aldehyde, then the enolate ion adds to that carbonyl group in a nucleophilic addition. First, the enolate ion attacks the carbonyl group to form an alkoxide. Protonation of the alkoxide gives the addition product. [Pg.1046]

Nucleophilic addition of the nitronate anion to the carbonyl group gives an alkoxide protonation on work-up gives the corresponding alcohol. [Pg.168]

Amines deprotonate water to a small extent to form ammonium and hydroxide ions. Thus, amines are more strongly basic than alcohols but not nearly as basic as alkoxides. Protonation occurs at the site of the free electron pair as pictured in the electrostatic potential map of A,A-dimethylmethanamine (trimethylamine) in the margin. [Pg.944]

Classical trajectories have also been used to study the dynamics of the gas-phase alcohol/alkoxide proton transfer reaction ... [Pg.3070]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

Wylation under neutral conditions. Reactions which proceed under neutral conditions are highly desirable, Allylation with allylic acetates and phosphates is carried out under basic conditions. Almost no reaction of these allylic Compounds takes place in the absence of bases. The useful allylation under neutral conditions is possible with some allylic compounds. Among them, allylic carbonates 218 are the most reactive and their reactions proceed under neutral conditions[13,14,134], In the mechanism shown, the oxidative addition of the allyl carbonates 218 is followed by decarboxylation as an irreversible process to afford the 7r-allylpalladium alkoxide 219. and the generated alkoxide is sufficiently basic to pick up a proton from active methylene compounds, yielding 220. This in situ formation of the alkoxide. which is a... [Pg.319]

Section 5 15 Dehydrohalogenation of alkyl halides by alkoxide bases is not compli cated by rearrangements because carbocations are not intermediates The mechanism is E2 It is a concerted process m which the base abstracts a proton from the p carbon while the bond between the halogen and the a carbon undergoes heterolytic cleavage... [Pg.223]

IS a two step process m which the first step is rate determining In step 1 the nucleophilic hydroxide ion attacks the carbonyl group forming a bond to carbon An alkoxide ion is the product of step 1 This alkoxide ion abstracts a proton from water m step 2 yielding the gemmal diol The second step like all other proton transfers between oxygen that we have seen is fast... [Pg.716]

Step 2 The alkoxide ion formed m the first step abstracts a proton from hydrogen... [Pg.719]

Step 2 The alkoxide ion abstracts a proton from water to give the product of aldol addition a (3 hydroxy aldehyde ... [Pg.770]

The imide proton N-3—H is more acidic than N-1—H and hence this position is more reactive toward electrophiles in a basic medium. Thus hydantoins can be selectively monoalkylated at N-3 by treatment with alkyl haUdes in the presence of alkoxides (2,4). The mono-A/-substituted derivatives (5) can be alkylated at N-1 under harsher conditions, involving the use of sodium hydride in dimethylform amide (35) to yield derivatives (6). Preparation of N-1 monoalkylated derivatives requires previous protection of the imide nitrogen as an aminomethyl derivative (36). Hydantoins with an increased acidity at N-1—H, such as 5-arylmethylene derivatives, can be easily monoalkylated at N-3, but dialkylation is also possible under mild conditions. [Pg.250]

Potassium Alkoxides. The most widely used potassium bases are potassium tert-hu. oAde [865-47-4] (KTB) and potassium / i -amylate [41233-93-6] (KTA). These strong alkoxide bases offer such advantages as base strength (pX = 18), solubiUty (Table 5), regio/stereoselectivity because of bulky alkyl groups, and stabiUty because of the lack of a-protons. On storage, KTB and KTA have long shelf Hves under inert atmosphere (see... [Pg.519]

Solvent for Base-Catalyzed Reactions. The abihty of hydroxide or alkoxide ions to remove protons is enhanced by DMSO instead of water or alcohols (91). The equiUbrium change is also accompanied by a rate increase of 10 or more (92). Thus, reactions in which proton removal is rate-determining are favorably accompHshed in DMSO. These include olefin isomerizations, elimination reactions to produce olefins, racemizations, and H—D exchange reactions. [Pg.112]

The hydrides can also be used to form primary alcohols from either terminal or internal olefins. The olefin and hydride form an alkenyl zirconium, Cp2ZrRCl, which is oxidized to the alcohol. Protonic oxidizing agents such as peroxides and peracids form the alcohol direcdy, but dry oxygen may also be used to form the alkoxide which can be hydrolyzed (234). [Pg.439]

Reaction of Enolate Anions. In the presence of certain bases, eg, sodium alkoxide, an ester having a hydrogen on the a-carbon atom undergoes a wide variety of characteristic enolate reactions. Mechanistically, the base removes a proton from the a-carbon, giving an enolate that then can react with an electrophile. Depending on the final product, the base may be consumed stoichiometricaHy or may function as a catalyst. Eor example, the sodium alkoxide used in the Claisen condensation is a catalyst ... [Pg.389]

Reactions of types (i)-(vi) can be catalyzed by alkoxide or hydroxide ions, or amines. Alternatively, an acid catalyst forms a complex of type (380) from which proton loss is facilitated. [Pg.89]

The acetal might undergo ionization with formation of an alkoxide ion and a carbocation. In a second step, the alkoxide would be protonated. This mechanism is extremely rare, if not impossible, because an alkoxide ion is a poor leaving group. [Pg.454]

Organolithium and organomagnesium reagents are highly reactive toward most carbonyl compounds. With aldehydes and ketones, the tetrahedral adduct is stable, and alcohols are isolated after protonation of the adduct, which is an alkoxide ion. [Pg.462]

Detailed mechanistic studies have been carried out on aminolysis of substituted aryl acetates and aryl carbonates. Aryl esters are considerably more reactive than alkyl esters because the phenoxide ions are better leaving groups than alkoxide ions. The tetrahedral intermediate formed in aminolysis can exist in several forms which differ in extent and site of protonation ... [Pg.480]

In acidic solution, the nitrogen is protonated and becomes a better leaving group and also loses its ability to assist in the elimination of the alkoxide. Under these circumstances, nitrogen eUmination is favored ... [Pg.481]

The principal difference hes in the poorer ability of amide ions to act as leaving groups, compared to alkoxides. As a result, protonation at nitrogen is required for breakdown of the tetrahedral intermediate. Also, exchange between the carbonyl oxygen and water is extensive because reversal of the tetrahedral intermediate to reactants is faster than its decomposition to products. [Pg.482]

This variation from the ester hydrolysis mechanism also reflects the poorer leaving ability of amide ions as compared to alkoxide ions. The evidence for the involvement of the dianion comes from kinetic studies and from solvent isotope effects, which suggest that a rate-limiting proton transfer is involved. The reaction is also higher than first-order in hydroxide ion under these circumstances, which is consistent with the dianion mechanism. [Pg.482]

Conversion of PGA2 to the highly sensitive PGC2 was accomplished by deconjugation of the enone system by formation of the y-extended enolate using rm-alkoxide as base and a-protonation by pH 4 buffer. [Pg.270]

Certain functional groups may be protected from reduction by conversion to anions that resist reduction. Such anions include the alkoxides of allylic and benzylic alcohols, phenoxide ions, mercaptide ions, acetylide ions, ketone carbanions, and carboxylate ions. Except for the carboxylate, phenoxide, and mercaptide ions, these anions are sufficiently basic to be proton-ated by an alcohol, so they are useful for protective purposes only in the... [Pg.3]

A competing reaction in any Birch reduction is reaction of the alkali metal with the proton donor. The more acidic the proton donor, the more rapid IS the rate of this side reaction. Alcohols possess the optimum degree of acidity (pKa ca. 16-19) for use in Birch reductions and react sufficiently slowly with alkali metals in ammonia so that efficient reductions are possible with them. Eastham has studied the kinetics of reaction of ethanol with lithium and sodium in ammonia and found that the reaction is initially rapid, but it slows up markedly as the concentration of alkoxide ion in the mixture... [Pg.19]


See other pages where Alkoxides protonation is mentioned: [Pg.157]    [Pg.158]    [Pg.47]    [Pg.448]    [Pg.83]    [Pg.440]    [Pg.88]    [Pg.256]    [Pg.157]    [Pg.158]    [Pg.47]    [Pg.448]    [Pg.83]    [Pg.440]    [Pg.88]    [Pg.256]    [Pg.325]    [Pg.590]    [Pg.681]    [Pg.191]    [Pg.466]    [Pg.350]    [Pg.258]    [Pg.329]    [Pg.72]    [Pg.152]    [Pg.891]    [Pg.455]    [Pg.411]    [Pg.4]   
See also in sourсe #XX -- [ Pg.730 , Pg.733 , Pg.743 , Pg.751 , Pg.754 ]




SEARCH



Alkoxide anions protonation

Alkoxide oxygen, protonation

© 2024 chempedia.info