Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effect alkenes

Decomposition of more complex diaziriries follows first order kinetics also. Chlorophenyl-carbene adds to cyclohexene to give a norcarane derivative. Substituent effects of m-Cl, m-NOa or m-Me groups, as well as solvent effects, are small. Chlorotrichloromethyldiazirine yields tetrachloroethylene chlorocyclooctyldiazirine also leads to an alkene 74CJC246). [Pg.225]

AA sec acrylic acid abstraction sec hydrogen atom transfer abstraction v,v addition and micleophilicity 35 by aikoxy radicals 34-5, 124-5, 392 by alkoxycarbonyloxy radicals 103,127-8 by alkyl radicals 34 5, 113, 116 by f-amyloxy radicals 124 by arenethiyl radicals 132 by aryl radicals 35, 118 by benzovloxy radicals 35, 53, 120, 126 wilh MM a" 53, 120 by /-butovy radicals 35, 53, 55, 124 solvent effects 54, 55. 123 with alkenes 122 3 with ally I acrylates 122 wilh AMS 120, 123 wilh BMA 53, 123 with isopropenvl acetate 121 with MA 120 with MAN 121 with MMA 53, 55, 120.419 with VAc 121 with vinyl ethers 123... [Pg.591]

There is no clear reason to prefer either of these mechanisms, since stereochemical and kinetic data are lacking. Solvent effects also give no suggestion about the problem. It is possible that the carbon-carbon bond is weakened by an increasing number of phenyl substituents, resulting in more carbon-carbon bond cleavage products, as is indeed found experimentally. All these reductive reactions of thiirane dioxides with metal hydrides are accompanied by the formation of the corresponding alkenes via the usual elimination of sulfur dioxide. [Pg.421]

The diradical mechanism b is most prominent in the reactions involving fluorinated alkenes. These reactions are generally not stereospecificand are insensitive to solvent effects. Further evidence that a diion is not involved is that head-to-head eoupling is found when an unsymmetrical molecule is dimerized. Thus dimerization of F2C=CFC1 gives 106, not 107. If one pair of electrons moved before the other, the positive end of one molecule would be expeeted to attack the negative end of the other. [Pg.1080]

Kinetic data can be discussed in terms of bromine bridging in ionic intermediates if the transition states of the ionization step are late. It appears that this is the case in the bromination of a wide variety of olefins, and in particular of alkenes, stilbenes and styrenes. Large p- and m-values for kinetic substituent and solvent effects (p. 253) consistent with high degrees of charge development at the transition states, are found for the reaction of these compounds. It can therefore be concluded that their transition states closely resemble the ionic intermediates. [Pg.225]

The solvent has no influence on the stereoselectivity of bromine addition to alkenes (Rolston and Yates, 1969b), but it could have some effect on the regioselectivity, since this latter depends not only on polar but also on steric effects. Obviously, it modified the chemoselectivity. For example, in acetic acid Rolston and Yates find that 2-butenes give 98% dibromides and 2% solvent-incorporated products whereas, in methanol with 0.2 m NaBr, dibromide is only about 40% and methoxybromide 60%. There are no extensive data, however, on the solvent effects on the regio- and chemoselectivity which would allow reliable predictions. [Pg.237]

Table 20 Solvent effects in alkene bromination dependence of the electrophilic (KSIEs) and nucleophilic assistances (R) on the alkene. Table 20 Solvent effects in alkene bromination dependence of the electrophilic (KSIEs) and nucleophilic assistances (R) on the alkene.
Finally, the last group of alkenes in Table 20 (congested alkenes) behaves very differently as regards solvent effects. The mBr, R and even KSIEs are systematically smaller than those observed for the two previous series. The attenuation of these coefficients can be reasonably attributed neither to earlier transition states nor to increases in nucleophilic solvent assistance. As described in the paragraph on return (p. 279), this trend is more consistent... [Pg.273]

The data compiled in Tables 6.15 and 6.16 indicate how a selection of methods perform in determining reaction barriers for methyl radical additions to a series of substituted alkenes. The experimental values with which comparisons are made in Tables 6.15 - 6.20 come from experiments in solution [40, 42, 45, 46] so there is the possibility of non-negligible solvent effects in some instances. [Pg.182]

Solvent Effects. Information on the effect of solvent polarity of the phase transfer assisted permanganate oxidation of alkenes has been obtained by studying the oxidation of methyl cinnamate by tetrabutylammonium permanganate in tv/o different solvents, acetone and methylene chloride (37). [Pg.92]

Previous studies have shown that the rate of the O2 ene reaction with alkenes shows neghgible dependence on solvent polarity . A small variation in the distribution of the ene products by changing solvent was reported earlier . However, no mechanistic explanation was offered to account for the observed solvent effects. It is rather difficult to rationahze these results based on any of the currently proposed mechanisms of singlet oxygen ene reactions. Nevertheless, product distribution depends substantially on solvent polarity and reaction temperature only in substrates where both ene and dioxetane products are produced ° . [Pg.854]

Haloform reaction, 237, 296 Halogenation alkanes, 300, 323 alkenes, 179,186, 313 benzene, 138,316 ketones, 295 Hammett equation, 362 additional parameters, 374, 388, 395 derivation of, 362 deviations from, 375 empirical nature of, 395 implications of, 394 reaction pathway, and, 375 solvent effects and, 388 spectroscopic correlations, 392 standard reaction for, 362, 395 steric effects and, 361, 383 thermodynamic implications of, 394 Hammett plots, 359 change in rate-limiting step and, 383 change in reaction pathway and, 378... [Pg.209]

The addition of singlet oxygen to alkenes also gives dioxetanes. A number of mechanisms have been proposed and the literature abounds with theoretical and experimental results supporting one or more possible intermediates (a) 1,4-diradicals, (b) 1,4-dipolar, (c) perepoxides, or (d) concerted (Scheme 95). Both ab initio and semi-empirical calculations have been done and to date the controversy is still not resolved. These mechanisms have been reviewed extensively (77AHC(21)437, 80JA439, 81MI51500 and references therein) and will not be discussed here, except to point out that any one mechanism does not satisfactorily account for the stereospecificity, solvent effects, isotope effects and trapped intermediates observed. The reaction is undoubtedly substrate-dependent and what holds for one system does not always hold for another. [Pg.476]

The characteristic features of hydroboration of alkenes—namely, regioselec-tivity, stereoselectivity, syn addition, and lack of rearrangement—led to the postulation of a concerted [2 + 2] cycloaddition of borane353,354 via four-center transition state 37. Kinetic studies, solvent effects, and molecular-orbital calculations are consistent with this model. As four-center transition states are unfavorable, however, the initial interaction of borane [or mentioned monobridged dimer, Eq. (6.56)] with the alkene probably involves an initial two-electron, three-center interaction355,356(38, 39). [Pg.318]


See other pages where Solvent effect alkenes is mentioned: [Pg.368]    [Pg.373]    [Pg.277]    [Pg.447]    [Pg.142]    [Pg.148]    [Pg.317]    [Pg.349]    [Pg.243]    [Pg.4]    [Pg.291]    [Pg.15]    [Pg.1487]    [Pg.4]    [Pg.313]    [Pg.853]    [Pg.306]    [Pg.400]   
See also in sourсe #XX -- [ Pg.446 ]




SEARCH



Alkenes effect

Alkenes, solvents

© 2024 chempedia.info